

MULTI-CLASS CLASSIFICATION FOR IDENTIFYING JPEG
STEGANOGRAPHY EMBEDDING METHODS

DISSERTATION

Benjamin M. Rodriguez II

AFIT/DEE/ENG/08-20

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this dissertation are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or the

U.S. Government.

AFIT/DEE/ENG/08-20

MULTI-CLASS CLASSIFICATION FOR IDENTIFYING JPEG
STEGANOGRAPHY EMBEDDING METHODS

DISSERTATION

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Benjamin M. Rodriguez II, BS, MS

September 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

MULTI-CLASS CLASSIFICATION FOR IDENTIFYING JPEG
STEGANOGRAPHY EMBEDDING METHODS

Benjamin M. Rodriguez II, BS, MS

Approved:

@ AUG -
Date

Kenneth W. Bauer Jr. (Member) Date

Robert E. Neher Jr., Lt Col, ~ S A F (Member)

Accepted:

huT--
M. U. Thomas
Dean, Graduate School of
Engineering and Management

S ~ v r .
Date

42
Date

iv

AFIT/DEE/ENG/08-20

Abstract

Over 725 steganography tools are available over the Internet, each providing a method

for covert transmission of secret messages. This research presents four steganalysis

advancements that result in an algorithm that identifies the steganalysis tool used to

embed a secret message in a JPEG image file. The algorithm includes feature generation,

feature preprocessing, multi-class classification and classifier fusion. The first

contribution is a new feature generation method which is based on the decomposition of

discrete cosine transform (DCT) coefficients used in the JPEG image encoder. The

generated features are better suited to identifying discrepancies in each area of the

decomposed DCT coefficients. Second, the classification accuracy is further improved

with the development of a feature ranking technique in the preprocessing stage for the

kernel Fisher’s discriminant (KFD) and support vector machines (SVM) classifiers in the

kernel space during the training process. Third, for the KFD and SVM two-class

classifiers a classification tree is designed from the kernel space to provide a multi-class

classification solution for both methods. Fourth, by analyzing a set of classifiers,

signature detectors, and multi-class classification methods a classifier fusion system is

developed to increase the detection accuracy of identifying the embedding method used

in generating the steganography images. Based on classifying stego images created from

research and commercial JPEG steganography techniques, F5, JP Hide, JSteg, Model-

based, Model-based Version 1.2, OutGuess, Steganos, StegHide and UTSA embedding

methods, the performance of the system shows a statistically significant increase in

classification accuracy of 5%. In addition, this system provides a solution for identifying

steganographic fingerprints as well as the ability to include future multi-class

classification tools.

v

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Gilbert L. Peterson. I

would also like to thank my committee members Dr. Kenneth W. Bauer Jr. and Lt Col

Robert E. Neher Jr., for their input and advice. I would like to thank June Rodriguez,

Mei-Ching Chen and Okan Caglayan for their countless hours in helping me edit my

document. My AFIT friends, Maj Steve Oimoen, Lt Col Matt Sambora, Capt Nate Leap

and Capt Mike Turnbaugh, for their help in all of our classes. Finally, special thanks goes

to my wife and two daughters for their understanding and support during the dissertation

process and my time at the Air Force Institute of Technology.

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures .. xi

List of Tables ... xiv

I. Introduction ..1

1.1 Background...4

1.1.1 Introduction to Steganography .. 4

1.1.2 Difference between Steganography and Cryptography 5

1.1.3 Differences between Steganography and Watermarking 6

1.1.4 Steganalysis... 6

1.2 Problem Statement..8

1.2.1 Feature Generation .. 10

1.2.2 Feature Improvement .. 11

1.2.3 Classification... 13

1.2.4 Classifier Fusion ... 14

1.3 Methodology...15

1.3.1 DCT Feature Generation ... 15

1.3.2 Feature Improvement .. 16

1.3.3 Classification... 16

1.3.4 Classifier Fusion ... 17

1.3.5 Results ... 17

vii

1.4 Summary...18

II. Literature Review ..20

2.1 JPEG Image Representation Background ..21

2.2 Feature Generation for JPEG Images ...26

2.2.1 Wavelet Statistical Model ... 27

2.2.2 DCT Features .. 32

2.3 Feature Preprocessing ...37

2.3.1 Data Preparation.. 37

2.3.2 Outlier Removal .. 39

2.4 Feature Extraction ..41

2.4.1 Principal Component Analysis (PCA) .. 42

2.4.2 Kernel PCA ... 43

2.5 Feature Ranking/Selection..44

2.5.1 Bhattacharyya Distance .. 44

2.5.2 Fisher’s Linear Discriminant Ratio (FDR/F-Score) 45

2.5.3 Signal-to-Noise Feature Selection .. 47

2.5.4 Kernel Fisher’s Recursive Feature Elimination .. 48

2.5.5 Zero-Norm Feature Ranking ... 49

2.6 Classification ..50

2.6.1 Expectation Maximization (EM) .. 51

 2.6.1.1 Mixture Models .. 53

2.6.1.2 Bayes Classifier ... 55

viii

2.6.2 k-Nearest Neighbors .. 56

2.6.3 Kernel Fisher’s Discriminant (KFD) .. 57

2.6.4 Parzen Window ... 60

2.6.5 Probabilistic Neural Networks (PNN) .. 62

2.6.6 Support Vector Machine (SVM) ... 64

2.7 Multi-Class Classification ..67

2.7.1 One-Against-One .. 68

2.7.2 One-Against-All .. 69

2.8 Classifier Fusion ...69

2.8.1 Boosting .. 70

2.8.2 Bayes Network for Model Averaging ... 72

2.8.3 Probabilistic Neural Network (PNN) Fusion .. 73

2.9 Summary...73

III. Methodology ..75

3.1 Feature Generation ...77

3.1.1 DCT Representation.. 78

3.1.2 Arrangement of Decomposed DCT Coefficients 80

 3.1.2.1 Frequency and Directional Coefficient Vectors 80

 3.1.2.2 Block Shifted Coefficient Vectors ... 83

 3.1.2.3 Neighboring Coefficient Matrices ... 89

3.1.3 Metrics Calculation ... 92

ix

 3.1.3.1 Mean Difference between DCT Coefficients and Neighboring

Coefficients .. 92

 3.1.3.2 Least Squares Linear Regression ... 93

3.1.4 Statistics Calculation ... 95

3.1.5 Features ... 96

3.2 Feature Ranking/Selection..97

3.2.1 SVM-Kernel Feature Ranking (KFR) ... 97

3.2.2 Kernel Fisher’s Discriminant Classifier Kernel Feature Ranking 105

3.3 Learning Decision Trees using Kernel mapping for creating Multi-class

Classification from two-class KFD and SVM Classifiers ..108

3.4 Fusion of Multi-Class Classification Systems ..112

3.4.1 AdaBoost Boosting ... 113

3.4.2 Bayes Network for Model Averaging ... 114

3.4.3 Probabilistic Neural Network (PNN) Fusion .. 116

3.5 Summary...117

IV. Analysis and Results ..118

4.1 Confirming and Validating the Analysis ..119

4.2 Feature Generation Method Comparison ...121

4.2.1 Wavelet Feature Generation (Lyu and Farid, 2004) 122

4.2.2 DCT Feature Generation (Pevny and Fridrich, 2006) 123

4.2.3 DCT Directional and Frequency Decomposition 125

4.2.4 Combined Features ... 126

x

4.2.5 Summary of Feature Generation Methods .. 128

4.3 Results for Individual Multi-class Detection Systems130

4.3.1 Expectation Maximization .. 130

4.3.2 k–Nearest Neighbors (k-NN) .. 132

4.3.3 Probabilistic Neural Networks (PNN) .. 134

4.3.4 Parzen window .. 135

4.3.5 Kernel Fisher’s Discriminant (KFD) with Multi-class Tree 136

4.3.6 Support Vector Machines (SVM) with Multi-class Tree 138

4.3.7 StegoWatch ... 140

4.3.8 Summary of Steganalysis Multi-Class results .. 141

4.4 Fusion ...143

4.4.1 AdaBoost... 143

4.4.2 Bayes Fusion ... 144

4.4.3 PNN Fusion ... 145

4.4.4 Summary of Multi-class Steganalysis Fusion Techniques 146

4.5 Summary...148

V. Conclusion and Recommendations ..149

5.1 Application of Results ..149

5.2 Recommendations for Future Work ...151

5.3 Conclusion ..152

Appendix A ..154

Bibliography ..157

Vita ..173

xi

List of Figures

Page

Figure 1.1. Prisoner’s Problem, Schematic of the Principles of Steganography. 2

Figure 1.2. Steganalysis Classification System in Training Stage. 9

Figure 2.1. Basic Detection System. ... 20

Figure 2.2. Block Diagrams of Sequential JPEG Encoder. .. 22

Figure 2.3. Typical quantization matrix. ... 24

Figure 2.4. DCT decomposition zig-zag structure for an 8×8 block, a) zig-zag pattern b)

coefficient ordering sequence .. 25

Figure 2.5. Low-pass and high-pass quadrature mirror filter frequency. 28

Figure 2.6. Wavelet Structure a) Simple image with vertical, horizontal and diagonal

lines b) 2 level wavelet decomposed c) 3 level wavelet decomposition. 29

Figure 2.7. Feature generating structure. .. 33

Figure 2.8. Expectation Maximization using mixture models with Decision Boundary. . 54

Figure 2.9. k-NN Decision Boundary. .. 56

Figure 2.10. KFD Decision Boundary using RBF Kernel. ... 60

Figure 2.11. Parzen Density Estimator with RBF window with Decision Boundary. 62

Figure 2.12. Probabilistic Neural Network Classification Structure. 63

Figure 2.13. PNN with Decision Boundary. ... 64

Figure 2.14. SVM with Optimal Hyperplane. ... 66

Figure 3.1. Detection System. ... 76

Figure 3.2. General Feature Generation System. .. 77

xii

Figure 3.3. DCT decomposition a) zig-zag scan pattern b) low, medium and high

frequency distributions c) vertical, diagonal and horizontal directions d) 8×8 image

with a horizontal edge between pixels e) 8×8 image with a diagonal edge between

pixels f) 8× 8 image with a vertical edge between pixels g) 2-D DCT representation

of horizontal image h) 2-D DCT representation of diagonal image i) 2-D DCT

representation of vertical image. .. 79

Figure 3.4. DCT Coefficient Locations and Separations a) DCT Coefficient Location

after Zig-Zag Scan b) Coefficient Locations of Vertical, Diagonal and Horizontal

directions c) Coefficient Locations of Low, Mid and High Frequencies d) 8×8 block

Coefficient Separation of both frequencies and directions. 81

Figure 3.5. Original block and right shifted pixel locations ... 84

Figure 3.6. Original block and down shifted pixel locations .. 86

Figure 3.7. Original block and diagonal shifted pixel locations. 88

Figure 3.8. One dimensional mapping of Equation (3.19) when the strong ranked feature

is removed. ... 99

Figure 3.9. One dimensional mapping of Equation (3.19) when the weak ranked feature is

removed. ... 100

Figure 3.10. One dimensional mapping of Equation (3.20) when the highest ranked

feature is removed. ... 103

Figure 3.11. One dimensional mapping of Equation (3.20) when the lowest ranked

feature is removed. ... 104

xiii

Figure 3.12. One dimensional mapping of Equation (3.19) when the top 25% of the

ranked features are kept. .. 105

Figure 3.13. Decision tree for a 10-class classification problem with 10 leaf nodes, 9

parent nodes and a maximum depth of 6. .. 108

Figure 3.14. Distance values ˆ
kCD for a 10 class problem. ... 111

Figure 3.15. Detection structure for 8 classification models. ... 114

Figure 3.16. Probabilistic Neural Network Classification Structure. 116

Figure 4.1. 5-fold cross-validation with 5 runs consisting of 80% of the data for training

the classification model and 20% for testing the training model. 120

Figure 4.2. Decision tree for a 10-class classification problem with 10 leaf nodes, 9

parent nodes and a maximum depth of 6. .. 137

Figure 4.3. Decision tree for a 10-class classification problem with 10 leaf nodes, 9

parent nodes and a maximum depth of 6. .. 139

Figure 5.17. Detection system. ... 150

xiv

List of Tables

Page

Table 2.1. All 23 distinguishing functionals. .. 36

Table 2.2. Parameterization for mixture models. .. 54

Table 3.1. Test statistics for generating features. .. 96

Table 3.2. Distribution of the image types. ... 114

Table 4.1. Classification accuracy for wavelet feature generation. 122

Table 4.2. Classification accuracy for wavelet feature generation using feature ranking.

 .. 122

Table 4.3. t-test; paired two samples for means between Tables 4.1 and 4.2. 123

Table 4.4. Classification accuracy for DCT feature generation. 123

Table 4.5. Classification accuracy for DCT feature generation using feature ranking. .. 124

Table 4.6. t-test; paired two samples for means between Tables 4.4 and 4.5. 124

Table 4.7. Classification accuracy for DCT directional and frequency feature generation.

 .. 125

Table 4.8. Classification accuracy for DCT directional and frequency feature generation

using feature ranking. ... 125

Table 4.9. t-test; paired two samples for means between Tables 4.7 and 4.8. 126

Table 4.10. Classification accuracy for combined feature generation using feature

ranking. ... 126

Table 4.11. t-test: paired two samples for means of wavelet features with feature ranking

vs. combined features with feature ranking. .. 127

xv

Table 4.12. t-test: paired two samples for means of DCT features with feature ranking vs.

combined features with feature ranking. .. 127

Table 4.13. t-test: paired two samples for means of DCT directional and frequency

features with feature ranking vs. combined features with feature ranking. 128

Table 4.14. Classification accuracy summary for the individual feature generation and

combined features when feature ranking is used. .. 129

Table 4.15. Number of features used from each of the feature generation method in

feature combination. ... 129

Table 4.16. Classification accuracy for 10-class expectation maximization classifier. .. 131

Table 4.17. Classification accuracy for 10-class k-NN classifier. 133

Table 4.18. Classification accuracy for 10-class PNN classifier. 134

Table 4.19. Classification accuracy for 10-class Parzen window classifier. 135

Table 4.20. Classification accuracy for 10-class KFD classifier. 138

Table 4.21. Classification accuracy for 10-class SVM classifier. 140

Table 4.22. Classification accuracy for StegoWatch detection system. 141

Table 4.23. Classification accuracy for multi-class detection system. 142

Table 4.24. t-test: paired two samples for means. ... 142

Table 4.25. Classification accuracy for AdaBoost fusion. .. 144

Table 4.26. Classification accuracy for Bayes fusion. .. 145

Table 4.27. Classification accuracy for PNN fusion. .. 146

Table 4.28. Classification accuracy comparisons between the best individual results and

the three fusion methods. ... 147

xvi

Table 4.29. t-test: paired two samples for means of classification accuracy between PNN

fusion and SVM. .. 147

1

MULTI-CLASS CLASSIFICATION FOR IDENTIFYING JPEG

STEGANOGRAPHY EMBEDDING METHOD

I. Introduction

Steganography plays an important role in information security, i.e., any form of covert

communication. Literally, the meaning of steganography originated from the ancient

Greek words is “covered writing” (The Oxford English dictionary, 1933). It puts

emphasis on perceptual unobservable/undetectable data hiding, i.e., the inability to prove

that a cover file contains hidden data. In order to hide secret information, three

components in steganography are the stego message, cover file and embedding method.

Stego message is the covert message that a sender wishes to remain confidential, such as

text, picture, audio, etc. A clean file is a file that has not been modified from its original

characteristics while a cover file/carrier is a file in which a message will be hidden

within. After using an embedding method, the stego system results in stego/dirty files that

are digital files containing the hidden information with the cover file and the stego

message as input, i.e., files have been manipulated by an embedding method by hiding

information. In the embedding and decoding procedures, a parameter, stego key, shared

by the sender and the receiver is used to limit the authority of extracting the stego

message from the stego file.

The classic model for steganography proposed by Simmons (1984) is the prisoners’

problem. Figure 1.1 illustrates a scenario of the problem that Alice and Bob are arrested

for a crime and thrown in two different cells. They want to develop an escape plan, but

the warden Wendy monitors all communications between the two prisoners. She will not

let them communicate through encryption and if she notices any suspicious

communication, she will place them in solitary confinement and thus suppress the

exchange of all messages. Hence, both parties must communicate invisibly in order to

avoid arousing Wendy’s suspicion; they have to set up a subliminal channel. A practical

2

way to do so is to hide meaningful information in some harmless message: Alice could,

for instance, use a digital photo of an aircraft and send this image to Bob. Wendy has no

idea that the binary value representation of the image transmits a secret escape plan

(stego message). After receiving the stego file, Bob reconstructs the message with a key

he shares with Alice.

Figure 1.1. Prisoner’s Problem, Schematic of the Principles of Steganography.

Contrary to steganography, steganalysis, the main research in this dissertation, is the

process for identifying a file containing steganography and/or extract the stego message.

Steganalysis has progressed from the simple case of determining whether an image

contains hidden information to the more complex problem of extracting the hidden

information. With over 725 steganography tools available over the Internet (Backbone

Security, 2008) this is an escalating problem. From a digital forensics standpoint, it is

important to extract the hidden data. A step in the process for doing this is identifying the

embedding algorithm used to create the stego file. Stego method identification however,

Warden Wendy Observing Communications between Alice and Bob

Alice Bob

Random
Generator
10110010

Message

Cover

Stego Object
Transmitted
Stego Object

Extracted
Message

Subliminal
Channel

Stego
Encoding
Algorithm

Stego
Decoding
Algorithm

Stego Key Shared between Alice and Bob

3

is not trivial with so many tools available. A step towards algorithm identification

requires determining the class of steganography algorithm used during embedding. This

identification requires developing a steganalysis system.

This research focuses on building up a multi-class steganalysis system for detecting the

secret in compressed images. The system includes generating the features from inputs,

which are the characteristics of the JPEG images. The generated raw features are sent

through a set of preprocessing steps; feature ranking, feature selection and feature

extraction, which are used to eliminate redundancies within features. The preprocessed

features are input to SVM or KFD classifiers using the presented multi-class tree with the

selected and the fusion of classifiers. The performance of the system is based on the

classification accuracy on input images, determining clean or stego images of which in

the following JPEG embedding methods are used: F5, JP Hide, JSteg, Model-based,

Model-based Version 1.2, OutGuess, Steganos, StegHide and UTSA.

In the following section, a background of steganalysis is given which includes the

definition of steganography, a brief history, comparisons with cryptography and

watermarking along with a definition of steganalysis. Following this, a section devoted to

the problem statement for a multi-class classification system is outlined. The problems

which are encountered in the development of multi-class systems such as the generation

of features, selection of the best set of features, classification with classifier selection and

the fusion of multi-class classification methods are also discussed. The methodology

section gives an overview of the multi-class steganalysis system including the generation

of features for JPEG images, the multi-class tree structure for classification, selection of

the most relevant features and the multi-class classification fusion system. The last

section concludes with the summary of the topics discussed within this chapter.

4

1.1 Background

In this section steganography, one of the information hiding techniques, is defined with

respect to current multimedia formats. A brief history of steganography (Kahn, 1996) is

given beginning with ancient Greece (Littlebury, 1737a; 1737b; Rawlinson, 1862; 1875;

1880; 1889) to the current classical model. In addition, a comparison is made between

steganography, cryptography and watermarking, which are the other data hiding

techniques, followed by a definition of steganalysis.

1.1.1 Introduction to Steganography

Communication systems have long been used to send and receive secret messages. In

many of these systems the messages may be transmitted through public communication

channels either open to be viewed or concealed from an outside observer. Stego messages

are the ones that have been hidden within innocent looking cover files creating a stego

file. Even though data hiding terminology is fairly modern due to the popularity of

multimedia, the roots of steganography can be traced back to ancient Greece (Littlebury,

1737a; 1737b; Rawlinson, 1862; 1875; 1880; 1889). A history of steganography was

written by Kahn (1996) providing specific steganography events. Herodotus, the father of

history, gives several cases (Littlebury, 1737a; 1737b; Rawlinson, 1862; 1875; 1880;

1889). A man named Harpagus wanted to send a secret message so he killed a hare and

hid a message inside its body. He sent it with a messenger who pretended to be a hunter

(Littlebury, 1737a, pp. 80-81; Rawlinson, 1889, pp. 201). In another instance (Littlebury,

1737a, pp. 19; Rawlinson, 1862, pp. 197), Histaieus wished to inform his friends that it

was time to begin a revolt against the Medes and the Persians. He shaved the head of one

of his trusted slaves, tattooed the message on the head, waited till his hair grew back, and

sent him along. It worked; the message successfully reached his intended recipients in

Persia and the revolt succeeded. Things worked more slowly in the days before faxes, e-

mail and the Internet. Herodotus also tells of a man named Demeratus who wanted to

5

report from the Persian court back to his friends in Greece that Xerxes the Great was

about to invade Greece (Littlebury, 1737b, pp. 278-279; Rawlinson, 1880, pp. 187).

Messages in those days were sent via writing tablets made of two pieces of wood, hinged

as a book, with each face covered with wax. One wrote on the wax; the recipient melted

the wax and reused the tablet. Demeratus removed the wax of the tablet, concealed a

message on the wood itself and recovered the tablet with wax. He then sent the

apparently blank tablets to Greece. At first nobody could figure out what they meant.

Then a woman named Gorgo guessed that maybe the wax was concealing something. She

removed it and became the first woman cryptanalyst (Kahn, 1996). Unfortunately, her

ingenuity had fatal consequences for her husband Leonidas, the king of Sparta; he died

with band of Greeks holding off the Persians at Thermopylae (Littlebury, 1737, pp. 270-

271; Rawlinson, 1880, pp. 178).

1.1.2 Difference between Steganography and Cryptography

An alternative method to steganography in secure communication is cryptography. An

important point to note is that both steganography and cryptography provide secure

communications and may be used concurrently. Steganography and cryptography differ

in execution. In cryptography, the secret message which is the transmitted file itself

cannot be recovered without the secret key; however, the encrypted file is identified as

being sent. It helps to protect confidentiality but protection vanishes after decryption. In

steganography the existence of the stego message is concealed in a cover file in a way

that does not allow an enemy to observe that there is a message present (Petitcolas et al.,

1999). The stego message can be extracted with stego key as long as the stego file is

identified by which embedding method is used.

6

1.1.3 Differences between Steganography and Watermarking

Except for steganography, watermarking has been the other data hiding technique broadly

used for authentication. Both of them share many common rules but the objectives for

these techniques are different. In watermarking, the important information is the cover

media. The embedded data is inserted solely for the protection of the cover media. In

steganography, the cover media is not important. It typically serves as a diversion from

the embedded data. Steganographic communications are usually between a sender and

single receiver while watermarking techniques are usually between a sender and many

receivers (Katzenbeisser and Petitcolas, 2000). Digital watermarking may be thought of

as a commercial application of steganography, being used to trace, identify and locate

digital media across networks (Johnson and Jajodia, 1998A; 1998B). The

encoding/decoding part of steganographic systems is similar to watermarking. However,

steganography has reduced robustness requirements allowing a higher embedding rate.

1.1.4 Steganalysis

Steganalysis is the science of detecting hidden information within a cover file, i.e., to

identify a file as containing stego and/or extract the stego message. An investigator using

steganalysis techniques is known as a steganalyst, such as Wendy in the prisoner’s

problem. Steganalysis is a relatively young research discipline with few articles

appearing before the late-1990s (Kessler, 2004). The science of steganalysis was initially

intended to detect or estimate the existence of stego information based on observing some

data transfer, while having no assumptions of the steganography algorithm applied

(Chandramouli, 2002). In digital image steganalysis an analyst has three goals, first

determine if an embedded message exists, next determine the embedding method used to

create the stego image, and finally extract the hidden message. This research focuses on

the second goal, that is, to identify the embedding technique used to create the

steganography image. Several detection systems currently exist, so the identification

7

problem becomes one of determining which detection system has correctly identified the

embedding method. Most steganalysis today is signature-based, similar to anti-virus and

intrusion detection systems. In this type of application, the known embedding algorithms

provide fingerprints that are added to a steganographic fingerprint database in which the

analyst creates a message and uses a known stego tool to create a stego file. This known

stego file is then analyzed to determine patterns for later use against other stego files

(Silman, 2001). Steganography detection and extraction is generally sufficient if the

purpose is evidently gathering related to a past crime. Although, disable the hidden

message so that the recipient cannot extract it and/or alter the hidden message to send

misinformation to the recipient might also be legitimate law enforcement goals during an

on-going investigation of criminal or terrorist groups (Jackson, 2003). The law

enforcement community does not always have the luxury of knowing when and where

steganography has been used or the algorithm that has been employed. Generic detection

tools generated from emerging research capable of detecting and classifying

steganography are becoming available, including research prototypes (Fridrich, 2004;

Lyu and Farid, 2004; Shi et al., 2005; Pevny and Fridrich, 2007; Rodriguez and Peterson,

2007; Wang and Moulin, 2007) and commercially-available tools (e.g., ILook

Investigator, Inforenz Forager, StegalyzerSS, SecureStego, StegDetect (Provos, 2004)

and WetStone’s Stego Suite).

The following definitions were introduced by Johnson and Jajodia (1998B) and are

frequently used by the steganalysis community:

 Stego-only attack: The stego file is the only item available for analysis.

 Known cover attack: The cover and stego file are both available for analysis.

 Known message attack: The hidden message is known.

 Chosen stego attack: The stego file and tool are both known.

 Chosen stego message attack: The steganalyst generates stego files from a known

steganography tool using a chosen stego message.

 Known stego attack: The cover file, stego file and stego tool are known.

8

1.2 Problem Statement

There is an estimated 725 steganography methods available on the Internet with the

majority being used for hiding messages in digital images (Backbone Security, 2008).

Several are downloadable for free and have user friendly graphical user interfaces (GUIs)

(Higgins, 2007). While these tools have been used to hide various forms of information

for privacy, these tools have also been used for criminal activity and malicious intent.

Documented examples of this have occurred, including an incident involving an engineer

sending an email with two attached images that turned out to be a set of stego files

containing intellectual property (Radcliff, 2002). Other crimes involving the use of

steganography include child pornography where the stego files are used to hide a

predator’s location when posting digital pictures on Web sites or sending them through

email (Astrowsky, 2000). Steganography may also be used to allow communication

between affiliates of an underground community, such as terrorist organizations (Kelley,

2001). To combat these image stego tools, an initial step requires determining if an

observed image contains a stego message. If an image is identified as being a stego file,

the second step is determining the embedding method. This step of identifying the

steganography method enables the steganalyst to then target the steganography method

and extract the hidden information in a final step.

Identifying the tool used to create the stego image will help in the extraction process of

removing the hidden message. Therefore, a system must be designed to identify which

stego tool is used. Several factors must be addressed in the steganalysis multi-class

classification system including feature generation, feature improvement, classifier

selection and fusion as shown in Figure 1.2.

9

Figure 1.2. Steganalysis Classification System in Training Stage.

As in the training stage, given clean and steganographic image datasets, the system with

all these procedures is trained to find out the suitable parameters used for classification.

The trained classification model as the output in this stage contains parameters for feature

improvement, the classifier parameters, and parameters for classifier fusion. Once the

model is set, the testing stage in Figure 1.3 indicates the output of the model is which

stego method is used, either none, F5, JP Hide, JSteg, Model-based, Model-based

Version 1.2, OutGuess, Steganos, StegHide and UTSA.

Several detection systems are available from research tools (Lyu and Farid 2002; 2004;

Fridrich, 2004; Lie and Lin, 2005; Shi et al., 2005; Xuan et al., 2005; Fu et al., 2006;

Pevny and Fridrich, 2006; 2007; Rodriguez and Peterson, 2007; Wang and Moulin, 2007)

Image Data Set
(Clean / Steganographic)

Feature
Generation

Classifier
Fusion

Classifier
Selection

Feature
Selection

Feature
Extraction

Feature
Pre-processing

Feature Improvement

Trained
Classification

Model

10

to commercially available systems (ILook Investigator © toolsets, Inforenz Forager®,

SecureStego (Air Force Research Laboratory, Rome, NY), StegDetect (Provos, 2004),

WetStone Stego Suite™). Each of the available systems has certain advantages over each

other. A steganalyst should use as many of these tools as possible when analyzing a set of

images. A problem arises when each detection system used potentially returns different

class labels representing different embedding techniques. In the event each of the

detection systems identifies a different stego tool, the analyst must then properly

determine the correct method from the different set of identified stego labels. The

solution described in this research fuses the results of each detection systems to get better

detection accuracy and alleviate the steganalyst from having to make this assessment.

The remainder of this section introduces the basic concept of feature generation, feature

improvement, classifier selection, multi-class classification and the fusion of classifier

systems.

1.2.1 Feature Generation

The basic concept of generating features is to transform a given image, which contains an

extensive number of data values in a two dimensional matrix, into a new set of features.

If the transform is suitably chosen the transform domain features can exhibit high

information properties about the original input image in a compact vector form. This

means that most of the classification related information is compressed in a relatively

small number of values leading to a reduced feature space (Theodoridis and

Koutroumbas, 2006). For example, consider a grayscale image that is of 512×512 pixels.

This image would contain 262,144 pixel values, mapping the image into a new domain

with the use of a transfer function can potentially represent the image with a significantly

smaller number of values. The basic reasoning behind transform-based features is that an

appropriate chosen transform can exploit and remove redundancies that usually exist in

digital images (Theodoridis and Koutroumbas, 2006). Consider the problem of

steganalysis, an input image that has been manipulated by an embedding method will

11

contain changes that are not visible to the human eye. In the case of JPEG images a

compression technique is used which is based on the discrete cosine transform (DCT).

Generating features for discriminating between a clean image (an original cover file) and

a stego image (stego file) using the DCT will eliminate redundant pixel information.

When generating features derived from calculating the DCT, most of the energy lies in

the frequency bands of the coefficients providing important information for class

discrimination. This however leads to a large number of features, which for classification

accuracy must be reduced.

1.2.2 Feature Improvement

With the raw features, feature improving before classification is vital. The goal for

improving the input features is to select a subset of feature and/or extract the most

feasible features able to categorize the inputs.

Feature Ranking and Selection - The major task in feature selection, given a large

number of features, is to select the most important features and reduce the dimensionality

while retaining class discriminatory information. This procedure is important when

determining which features are to be used to train the classification model. If features

with little discrimination power are selected the subsequent classification model will lead

to poor classification performance. On the other hand, if information rich features are

selected the design of the classifier can be greatly simplified. In a more quantitative

description, feature selection leads to large between-class distances and small within-

class distances in the feature space. That is, features should separate different classes by a

large distance, and should have small distance values between objects in the same class.

Several methods are available to identify individual features with linear separation, a few

ranking and selection methods include; divergence measure (Fukunaga, 1990;

Theodoridis and Koutroumbas, 2006), Bhattacharyya distance (Bhattacharyya, 1943;

Fukunaga, 1990) and Fisher’s linear discriminant ratio (Fisher, 1936; 1943; Dillon and

12

Goldstein, 1984; Fukunaga, 1990; van der Heijden et al., 2004; Bishop, 1995, 2006;

Theodoridis and Koutroumbas, 2006).

When measuring nonlinear class separability, care must be taken when using feature

ranking methods. Ranking methods developed for specific classifiers are often best suited

for determining the best set of ranked features. For neural network classifiers features are

ranking and selected based on a saliency metric (Ruck et al., 1990; Belue and Bauer,

1995) and signal-to-noise ratio (Bauer et al., 2000). For kernel based classifiers, such as

kernel Fisher’s discriminant and support vector machines, method-specific techniques are

best suited for ranking. These techniques include recursive feature elimination (Guyon et

al., 2002; Guyon, 2007), zero-norm feature ranking (Weston et al., 2003), gradient

calculations using recursive feature elimination (Rakotomamonjy, 2003), and kernel

Fisher’s discriminant using recursive feature elimination (Louw and Steel, 2006).

Feature Extraction - Another approach to reducing the dimension of the input features

is to use a transformed space instead of the original feature space. For example using a

transformation φ(⋅) that maps the data points x of the input space, n, into a reduced

dimensional space p, where n > p, creates features in a new space that may have better

discriminatory properties. Classification is based on the new feature space rather than the

input feature space. The advantage of feature extraction over feature selection is that no

information from any of the elements of the measurement vector is removed. In some

situations feature extraction is easier than feature selection. A disadvantage of feature

extraction is that it requires the determination of a suitable transformation φ(⋅). Some

methods include principal component analysis (Hotelling, 1933; Dillon and Goldstein,

1984) and kernel principal component analysis (Scholkopf et al., 1998; Bishop, 2006). If

the transformation chosen is too complex, the ability to generalize from a small data set

will be poor. On the other hand, if the transformation chosen is too simple, it may

constrain the decision boundaries to a form that is inappropriate to discriminate between

13

classes. Another disadvantage is that all features are used, even if some of them have

noise like characteristics. This might be unnecessarily expensive in term of computation

(van der Heijden et al., 2004). It should be noted that the transformation used for the

input features in the training of the classification model should also be used for the

testing features.

1.2.3 Classification

Given an input sample the training of a classification model may consist of supervised or

unsupervised learning. In supervised learning the input sample includes an identification

of its class membership. In unsupervised learning the class of the input sample is not

known (Jain et al., 2000). This research concentrates on supervised learning. Supervised

learning can be further broken down into subcategories of classification models. These

models include but not limited to the following classifier types (Duda and Hart, 1973;

Fukunaga, 1990; Theodoridis and Koutroumbas, 2006);

 Classifiers based on Bayes decision theory include; Bayesian networks,

discriminant functions, and mixture models, specifically, expectation

maximization. Linear classifiers include; Bayes linear classifier, Fisher’s linear

discriminant, and the perceptron algorithm.

 Nonlinear classifiers include; decision trees, kernel Fisher’s discriminant, multi-

layer perceptron, radial basis neural networks, and nonlinear support vector

machines.

 Nonparametric classifiers include; locally weighted regression, and Parzen

window.

 These classifiers are predominantly two-class classifiers while some can be either two-

class or multi-class classifiers. In this research the concentration is on multi-class

classification. The specific problem addressed is how to design discriminant functions

which are able to separate more than two classes (Duda and Hart, 1973; Platt et al., 2000;

Schwenker, 2000; Tax and Duin, 2002; Rifkin and Klautau, 2004; Eibl and Pfeiffer,

14

2005; Wang and Casasent, 2005; Liu and Zheng, 2005; Bishop, 2006; Middelmann et al.,

2006; Theodoridis and Koutroumbas, 2006; Yang et al., 2006).

1.2.4 Classifier Fusion

As noted, there is a large pool of different classifiers. In the literature, classifier fusion

has been proposed for improving classification performance by exploiting the individual

advantages of each of the classifiers (Woods et al., 1997; Duin and Tax, 2000; Ruta and

Gabrys, 2001; Shipp and Kuncheva, 2002; Jaeger, 2004; Kuncheva, 2004; Leap et al.,

2004; Theodoridis and Koutroumbas, 2006). The success of classifier fusion depends on

two factors defined by Goebel and Yan (2004); first, the proper selection of a pool of

diverse individual classifiers to be fused, and second, the proper method of fusing

individual classifiers. A third factor should also be considered, that is the subspace of the

classifiers being fused. Identifying the appropriate classifier for a particular problem is

not trivial. Selecting the single best performing classifier on the training data and

applying it to the testing data is the easiest method. While this approach is the simplest

the most advantageous performance may not be guaranteed. An increase of performance

can possibly be obtained by increasing the available dataset. When this is not an option,

the most reliable strategy is to evaluate as many different classifier designs as possible

and subsequently select the best performing model. The difficulty is that such a wide

evaluation is computationally complex. In relation to classifier fusion, selection identifies

the answers to which classifier and how many classifiers to select in order to obtain an

increased performance. In certain situations, a problem arises when the outputs of the

individual classifiers are of different types, either discrete values or posterior

probabilities. Hence, the proper classifier fusion technique has to be used for a specific

problem.

15

1.3 Methodology

The following sections describe the multi-class JPEG image steganalysis system. Each

subsection introduces the main advancements this research provides in the area of

steganalysis, specifically, feature generation, feature selection, classifier selection, and

multi-class classifier fusion.

1.3.1 DCT Feature Generation

This section describes the novel JPEG steganalysis feature generation method used in the

classification system. In this method the DCT coefficients are separated into vertical,

diagonal and horizontal orientation as well as low, medium and high frequencies. This is

known as DCT decomposition (Rao and Yip, 1990). Each of the 8×8 blocks is divided

into nine DCT decompositions represented by both the frequency distributions and

directions. The coefficients of interest are within the vertical, diagonal and horizontal

orientation of the low and medium frequency bands. The predictors are used to estimate

modifications made to an image by an embedding method. In this research four different

predictor methods are used. The first is a distance measure in which the distance between

neighboring coefficients is calculated and averaged. The second method used to calculate

the predictors is a least squares linear regression technique on the DCT neighboring

coefficients for JPEG images originally proposed by Farid (2002). In the final method the

predictors are calculated by shifting the 8×8 blocks by one pixel in the spatial domain

followed by recompressing the pixels using the JPEG properties. To measure the

coefficients, neighboring coefficients and shifted coefficients, 180 features are generated

from higher-order statistics that aid in the assessment of changes made to the image by an

embedding method. As more features are created, the problem becomes one of relevancy

to the actual classification problem.

16

1.3.2 Feature Improvement

The feature ranking/selection method used for improving identification accuracy is

designed for two kernel based classifiers, the kernel Fisher’s discriminant (KFD) and the

support vector machines (SVM). The benefit of this feature selection method is that the

classification algorithms being used assists in discriminating between important features

and noise features by ranking features in the kernel space. The ranking method consists

of; first, removing one feature at a time from the input space and transforming the

remaining features into the kernel space, second, identifying the alpha vectors and

support vectors, and third, assigning a ranking value to the removed feature using the

alpha vectors and support vectors with a new derived ranking measure. The selection is

based on the percentage of features necessary to increase classification performance, and

is termed SVM-Kernel Feature Ranking (SVM-KFR). This however, does not resolve the

need to discriminate between several classes.

1.3.3 Classification

For detecting stego messages in various embedding methods, a fusion of classifiers is

used to increase classification accuracy. Prior to the fusion process, the selection of

classifiers is vital. One approach is to first heuristically pick a number and types of

classifiers while ensuring a diverse output. Another approach is choosing classifiers from

a large pool to achieve classification performance as close to an error rate of zero as

possible. This should be accomplished while avoiding the exhaustive evaluation of all

possible classifier combinations. The classifiers are multi-class classifiers, including

Bayes decision theory method and expectation maximization (EM); the nonlinear

classifier probabilistic neural network (PNN); and nonparametric classifiers, k-nearest

neighbors and Parzen windows. Two nonlinear kernel based methods are also used, the

support vector machine (SVM) and kernel Fisher’s discriminant (KFD). These two

methods however are two-class classifiers. In this methodology, the focus is to solve

17

multi-class classification for identifying various stego embedding methods. In order to

solve the KFD and SVM two-class problem, a new multi-class classification tree is

designed specifically for the KFD and SVM where two-class classifiers reside at each

node of the tree. This tree is designed by separating classes into two groups at each node.

The classes are grouped according to the smallest distances between classes. This tree is

gradually expanded by adding a node each time a set of two or more classes is identified.

The smallest distance between a set of classes represents a low value in classification

accuracy. The distance measure is based on the kernel transform.

1.3.4 Classifier Fusion

The output labels of the multi-class classifiers expectation maximization (EM), k-nearest

neighbors (k-NN), Parzen window and probabilistic neural networks along with the

output labels of the new KFD and SVM multi-class classifiers are fused to increase

classification accuracy. Along with the six multi-class detection systems two commercial

tools, StegAlyzerSS and StegoSuite, are also fused. In this work, the individual detection

systems are fused using three fusion methods; the first method used for fusion is

boosting, specifically AdaBoost (Freund and Schapire, 1995); the second method is

Bayesian networks for model averaging (Murphy, 2001); the final method is probabilistic

neural networks.

1.3.5 Results

The simulation of the methodology is done by 5-fold cross validation having both

training and testing. With feature preprocessing, an average increase in classification

accuracy is achieved for the individual multi-class classifiers, EM, k-nearest neighbors,

Parzen window, PNN by as much as 22% in comparison to no features preprocessing. A

multi-class classification system for KFD and SVM is created by using a multi-class tree.

With the use of the tree structure the classification accuracy of this new system by

18

applying the feature preprocessing in the individual nodes, an increase in classification

accuracy is achieved by 10% than without feature preprocessing. With the use of the

classifier fusion, the overall accuracy by 5% over the best individual best classifier is

attained. Furthermore, the performance of the methodology shows statistical difference

between the newly fused system in comparison to the individual detection systems.

1.4 Summary

This chapter defined steganography, provided its brief history and how steganography is

used with current multimedia formats was given. A definition of steganalysis was also

given followed by a section devoted to the problem statement for a multi-class

classification system. The specific problems encountered in the development of multi-

class systems in this chapter are generation of features, selection of the best set of

features, classification selection and the fusion of multi-class classification methods. The

methodology for this research was introduced in Section 1.3 which included the

generation of features for identifying JPEG stego and clean images, selection of the most

relevant features, the design of a multi-class classification system for both KFD and SVM

and the fusion of multi-class classifiers.

Chapter 2 provides the necessary background and literature review in solving the

complex problem of identifying the embedding method used. In Chapter 3, the

methodology is described in detail in which the full detection system is developed. This

involves the generation of features, the ranking and selection of features, the design of the

classification tree and the fusion of classifiers to solve the multi-class problem. In

Chapter 4, the results are based on a twelve class dataset which contains a set of clean

images (one class) and steganography images (seven classes). The embedding methods

targeted in this paper are F5 (Westfeld, 2001; 2003), JP Hide (Latham, 1999), JSteg

(Upham, 1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2 (Sallee,

2008a), OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) and UTSA

19

(Agaian et al., 2006). The classification results are provided from EM, k-nearest

neighbors, Parzen Window and probabilistic neural networks multi-class classifiers, new

multi-class tree with KFD and SVM, commercial tool and fusion of all the multi-class

systems. The results also show the classification of the embedding methods with the new

feature generation methods compared with the wavelet based features (Lyu and Farid

2002) and the DCT based features (Pevny and Fridrich, 2007). These results show four

techniques that improve classification accuracy; first, the new feature generation method,

second, the multi-class tree allows the KFD and SVM to be used as multi-class classifier,

third, the selection of features at each node for the KFD and SVM classifiers, and the

final technique is the fusion of the various classifiers. Finally, Chapter 5 provides a

conclusion, contribution to DoD and future directions that may be considered in

expanding the steganalysis multi-class system.

20

II. Literature Review

This chapter presents related work relevant to the development of a steganalysis system.

There are several sub-components to this research, including JPEG image representation,

feature generation, feature preprocessing, feature extraction, feature selection,

classification, multi-class classification and classifier fusion. Figure 2.1 shows the basic

structure of the detection system and its primary components discussed in this chapter.

Figure 2.1. Basic Detection System.

Image Training Data Set
(Clean / Steganographic)

Feature
Generation

Classifier
Fusion

Classifier
Selection

Feature
Selection

Feature
Extraction

Feature
Pre-processing

Feature Improvement

Trained
Classification

Model

Unknown JPEG Image

Class Label Assignment

Feature
Generation

21

Related work on each of these topics is presented in this order in the following sections.

 Image Representation: The JPEG image format is described along with a basic

description of the areas within a JPEG image that are manipulated by an

embedding method.

 Feature Generation: Using statistical measures to identify changes made to a

JPEG image by an embedding method, two transform based methods in this

chapter generate one dimensional feature vectors from a matrix image

representation.

 Feature Extraction: The methods in this chapter map a set of feature vectors to a

lower dimensional space.

 Feature Ranking/Selection: A subset of features is chosen according to feature

ranking, noise features and class separability (means and variances).

 Classification: Six classification methods are described, i.e., expectation

maximization, k-nearest neighbors, kernel Fisher’s discriminant, Parzen window

probabilistic neural networks and support vector machines.

 Multi-class Classification: The multi-class methods include true multi-class

classifiers and the combination of two-class classifiers.

 Classifier Fusion: Three fusion methods are described; AdaBoost (Freund and

Schapire, 1995), Bayesian networks for model averaging (Murphy, 2001) and

probabilistic neural networks.

2.1 JPEG Image Representation Background

In this section, the basic structure of the JPEG image format and the steps in the

compression process are described. This is followed by a brief introduction of JPEG

image embedding methods.

The Joint Photographic Experts Group (JPEG) format uses lossy compression to achieve

high levels of compression on images with many colors (Elysium Ltd., 2004). JPEG is

22

an international standard for still image compression, and is widely used for

compressing gray scale and color images. JPEG images are commonly used for storing

digital photos, and publishing Web graphics; tasks for which slight reductions in the

image quality are barely noticeable. Due to the loss of quality during the compression

process, JPEGs should be used only where image file size is important (Murry and

vanRyper, 1994; Brown and Shepherd, 1995).

The JPEG encoder, shown in Figure 2.2, performs compression with the following

sequential steps: image preprocessing (divides the input image into 8×8 blocks), forward

DCT of each 8×8 block, quantization with scaling factor, separation of DC and AC

coefficients, prediction of the DC coefficient and zig-zag scan the AC coefficients and

Huffman encoder (there is a separate encoder for the DC and AC coefficients).

Figure 2.2. Block Diagrams of Sequential JPEG Encoder.

In JPEG decoding, all steps from the encoding process are reversed. The following

procedure is a short description of the JPEG baseline systems.

Compressed
Image Data

DCT
8×8 blocks

Huffman
Coding

Huffman
Coding

DC
Coefficients

AC
Coefficients

Zig-Zag
Scan

Prediction

Uncompressed
Image Data Quantization

Scale Factor

Image Data
Preprocessing

23

Preprocessing block - Subdivides the image into blocks of 8×8 pixels and level-shift the

original pixel values from the range [0, 225] to the range [-128,+127] by subtracting 128.

The shifting procedure is a preprocessing step for the DCT calculation.

Forward DCT block - Perform a two dimensional discrete cosine transform (DCT) on

each level-shifted block B from the Preprocessing block step. The two dimension DCT is

defined as

() ()

1 2
1 2

1 2 1 2
1 11 1 2 2

2 21 21 2

1 0

(, , ,)
1 12 1 2 12 cos cos
1 12 2

k k
N N

C n n k k
k Nn k n k
k NN NN N

π π

⎧ = =⎪
⎪= ⎨ ≤ ≤ −+ +⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟ ⎜ ⎟⎪ ≤ ≤ −⎝ ⎠ ⎝ ⎠⎩

 (2.1)

where 1 10 1n N≤ ≤ − and 2 20 1n N≤ ≤ − . In the JPEG encoding process, N1 = N2 = 8.

The transform is performed on the two dimensional matrix B as CBCT.

The transform helps to remove data redundancy by mapping data from a spatial domain

to the frequency domain. No compression has been achieved in this stage, but by

changing representation of the information contained in the image block it makes the data

more suitable for compression.

Quantization - Quantize the DCT coefficients block obtained from the previous step

using the quantization table Q. The quantization table is a matrix used to divide the

transformed block for compression purpose by reducing the amplitude of the DCT

coefficient values and increasing the number of zero valued coefficients. The Huffman

encoder takes advantage of these quantized values. When Qs is represented the value s is

a scalar multiple, called the scale (or quality) factor, which defines the amount of

compression within the image. Higher values of s yield higher compression. Figure 2.3

shows an instance of Qs.

24

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Qs s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 2.3. Typical quantization matrix.

A set of four quantization tables are specified by the JPEG standard (Independent JPEG

Group, 1998). After quantization, most of the DCT coefficients in the 8×8 blocks are

truncated to zero values. It is the principal of lossiness in the JPEG transform-based

encoder.

DC Coefficient Coding - The first coefficient, coefficient 1 (upper left) in Figure 2.4 b)

is called the “DC coefficient”, short for the direct current coefficient, and represents the

average brightness (intensity) of the component block. To encode the DC coefficient, the

JPEG standard utilizes a Huffman difference code table that categorizes the value

according to the number of k bits that are required to represent its magnitude. The value

of the element is encoded with k bits.

AC Coefficients Coding - The remaining 63 coefficients are the “AC coefficients”, short

for the alternating current coefficients. The Huffman code assigns short (binary)

codewords to each AC coefficient. The AC coefficient encoding scheme is slightly more

elaborate than the one for the DC coefficient. For each AC array, a run-length of 0

elements is recorded. When encountering a non-zero element, the length of 0s is recorded

and the number of k bits to represent the magnitude of the element is determined. The

25

run-length and k bits are used as a category in the JPEG default Huffman table for

assigning a code.

Using a zig-zag run encoder converts the 8×8 array of DCT coefficients into a column

vector of length k (zig-zag goes from left to right and top to bottom). The “zig-zag” scan

attempts to trace the DCT coefficients according to their significance, shown in Figure 2.

4.

1 2 6 7 15 16 28 29
3 5 8 14 17 27 30 43
4 9 13 18 26 31 42 44

10 12 19 25 32 41 45 54
11 20 24 33 40 46 53 55
21 23 34 39 47 52 56 61
22 35 38 48 51 57 60 62
36 37 49 50 58 59 63 64

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a) b)

Figure 2.4. DCT decomposition zig-zag structure for an 8×8 block, a) zig-zag pattern b)

coefficient ordering sequence

The Huffman encoding reduces the number of bits needed to store each of the 64 integer

coefficients. For example, when a true color uncompressed image of size 512×512 pixels

is stored the file size is 769 kilobytes. However, this same image store as a JPEG at a

quality factor of 75, the image is stored in 200 kilobytes or smaller. The Huffman

encoding tables for the DC and AC coefficients can be found in Gonzalez and Woods

(1992, 2002, 2007), Elysium Ltd. (2004), Independent JPEG Group (1998), and JPEG

(1994).

One of the primary reasons using image embedding methods for creating stego files is

due to the number of redundant portions within a digital image. The vast number of JPEG

26

images on the Internet makes them ideal cover images for hiding secrete data and

transmitting them as stego images. In JPEG steganography, the stego message is

converted to binary values and embedded into DC and AC coefficients prior to Huffman

encoding. By embedding at this stage, the stego message can be extracted without losing

the message. The embedding methods range from simple embedding techniques that alter

the least significant bits (LSB) of the coefficients such as JP Hide (Latham, 1999) and

JSteg (Upham, 1993) to more complicated embedding techniques that maintain natural

histograms of the coefficients such as; F5 (Westfeld, 2001; 2003), JP Hide (Latham,

1999), JSteg (Upham, 1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2

(Sallee, 2008a), OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) and

UTSA (Agaian et al., 2006). The six tools selected provide a set of embedding methods

that differ in embedding strategy. Investigation of these methods has provided an insight

into six different and unique embedding capacities, embedding patterns and the

appearance of the individual feature spaces. Another reason for selecting these particular

tools is in previous research and existing steganalysis tools, these 6 embedding methods

have been used for analysis (Provos and Honeyman, 2003; Lyu and Farid, 2004; Kharrazi

et al., 2005; Shi et al., 2005; Xuan et al., 2005; Fu et al., 2006; Pevny and Fridrich, 2007).

In summary, a useful property of JPEG is that the degree of lossiness can be varied by

adjusting the quality factor s (scale of the quantization table), shown in Figure 2.3. The

ease of file sharing with JPEG images and its popularity over the internet has made JPEG

image format a desirable cover file for many stego methods. Each embedding method

leaves a signature that can be identified by various statistical measures. The next section

describes feature generations methods used to identify changes made to a JPEG image.

2.2 Feature Generation for JPEG Images

Several steganalysis feature generation methods used to identify changes made to a JPEG

image have been published (Lie and Lin, 2005; Shi et al., 2005; Xuan et al., 2005; Fu et

27

al., 2006; Wang and Moulin, 2007). In this section two well known methods are

discussed. The first method developed by Lyu and Farid (2002; 2004) is a wavelet based

method in which features are generated from the wavelet coefficient using various

statistics. The second method is a DCT based feature generation method in which the

features are developed with the use of functions for the difference between DCT

coefficients of input image and of the predicted image (Fridrich, 2004; Pevny and

Fridrich, 2006).

The JPEG image coefficients are extracted using a transform, i.e., DCT or wavelet

transform, where the wavelet is calculated over the spatial domain not the transform

domain. These coefficients represent the image characteristics in a raw format, e.g., low,

mid and high frequencies for the DCT and vertical, horizontal and diagonal for the

wavelet transforms. The predictors which are the estimates of where the stego message is

hidden within an image are based on the feature generation method. Lyu and Farid (2002,

2004) use a regression technique to develop the weights associated with the coefficients

to produce the predictors. Fridrich (2004) crops an input image and re-expands the image

to develop the predictors. The features are finally generated by calculating statistics from

the coefficients and the predictors.

2.2.1 Wavelet Statistical Model

The image decomposition employed here is based on separable quadrature mirror filters

(Lyu and Farid, 2002, 2004). In digital signal processing, a quadrature mirror filter is a

filter bank which splits an input signal into two bands, low-pass and high-pass

frequencies. The low-pass and high-pass filters are related by the following equation:

()
2

2ˆ ˆ 1
2

h h πξ ξ⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

(2.2)

28

where ξ is the frequency, and the sampling rate is normalized to 2π, as shown in Figure

2.5.

Figure 2.5. Low-pass and high-pass quadrature mirror filter frequency.

Orthogonal wavelets such as the Haar wavelets and related Daubechies wavelets are

generated by scaling functions which, with the wavelet, satisfy a quadrature mirror filter

relationship (Addison, 2002; Gonzalez and Woods, 2004). Farid (2002) uses a variety of

wavelets but in this related work the symmetric quadrature mirror filters (Simoncelli and

Adelson, 1990) are used. A wavelet is a mathematical function used to divide a given

function into different frequency components and study each component with a

resolution that matches its scale. A wavelet transform is the representation of a function

by wavelets. The wavelets are scaled and translated copies (known as daughter wavelets)

of a finite-length or fast-decaying oscillating waveform (known as the mother wavelet).

Wavelet transforms have advantages over traditional Fourier transforms for representing

functions that have discontinuities and sharp peaks (Gonzalez and Woods, 2002;

Addison, 2002).

0
2
π

π

ˆ
2

h πξ⎛ ⎞+⎜ ⎟
⎝ ⎠

()ĥ ξ

29

The following explanation of the feature generation method is from Lyu and Farid (2002,

2004). The mapping from the spatial domain to the wavelet transform domain, f(x,y) →

V(x, y), H(x, y), and D(x, y) is a decomposition that splits the frequency space into

multiple orientations and scales. For a grayscale image, the vertical, horizontal and

diagonal subbands at scale i are denoted as Vi(x, y), Hi(x, y), and Di(x, y), respectively. In

Figure 2.6b, i is equal to 1 for the first level wavelet decomposition and the second level

decomposition is represented in Figure 2.6c. For a color (RGB) image, the decomposition

is applied independently to each color channel. The resulting subbands are denoted as

Vi
c(x, y), Hi

c(x, y), and Di
c(x; y), where c ∈ {r, g, b}.

 a) b) c)

Figure 2.6. Wavelet Structure a) Simple image with vertical, horizontal and diagonal

lines b) 2 level wavelet decomposed c) 3 level wavelet decomposition.

Given the decomposed image, the statistical model is composed of the mean μ, variance

σ2, skewness γ1 and kurtosis γ2 of the subband coefficients at each orientation, scale and

color channel. In order to capture higher-order statistical correlations, a second set of

statistics are collected that are based on the errors in a linear predictor of coefficient

magnitude. For the purpose of illustration, consider a vertical band of the green channel

at scale i, Vi
g(x, y). A linear predictor for the magnitude of these coefficients in a subset

of all possible spatial, orientation, scale, and color neighbors is given by:

30

1 2 3

4 5 6

7 8 9

(,) (1,) (1,) (, 1)

(, 1) (2, 2) (,)

(2, 2) (,) (,)

g g g g
i i i i

g g g
i i i

g r b
i i i

V x y w V x y w V x y w V x y

w V x y w V x y w D x y

w D x y w V x y w V x y

= − + + + −

+ + + +

+ + +

 (2.3)

where |⋅| denotes absolute value and wk are the weights. This linear relationship can be

expressed more compactly in matrix form as:

v Qw= (2.4)

where v contains the coefficient magnitudes of Vi
g(x,y) strung out into a column vector

(to reduce sensitivity to noise, only magnitudes greater than 1 are considered), the

columns of the matrix Q contain the neighboring coefficient magnitudes as specified in

Equation (2.4), and w = (w1 … w9)T. The weights w are determined by minimizing the

following quadratic error function:

() []2E w v Qw= − (2.5)

Using regression techniques the error function is minimized by differentiating with

respect to w :

() ()2 TE w
Q v Qw

w
∂

= −
∂

 (2.6)

setting the result equal to zero, and solving for w to yield the following solution:

() 1T Tw Q Q Q v
−

= (2.7)

31

Given the large number of constraints (one per pixel) and nine unknowns, it is generally

assumed that the 9×9 matrix QTQ will be invertible.

Given the linear predictor, the log error between the actual coefficient and the predicted

coefficient magnitudes is:

() ()log logp v Qw= − (2.8)

where the log(⋅) is computed point-wise on each vector component. The log(⋅) is used to

scale the values of the coefficients. Note, if data standardization is used on the generated

features after the statistics are calculated the log(⋅) operation may be omitted. It is from

this error that additional statistics are collected namely the mean, variance, skewness and

kurtosis. This process is repeated for scales i = 1,…,n, and for the subbands Vi
r and Vi

b,

where the linear predictors for these subbands are of the form:

1 2 3

4 5 6

7 8 9

(,) (1,) (1,) (, 1)

(, 1) (2, 2) (,)

(2, 2) (,) (,)

r r r r
i i i i

r r r
i i i

r g b
i i i

V x y w V x y w V x y w V x y

w V x y w V x y w D x y

w D x y w V x y w V x y

= − + + + −

+ + + +

+ + +

 (2.9)

and

1 2 3

4 5 6

7 8 9

(,) (1,) (1,) (, 1)

(, 1) (2, 2) (,)

(2, 2) (,) (,)

b b b b
i i i i

b b b
i i i

b r g
i i i

V x y w V x y w V x y w V x y

w V x y w V x y w D x y

w D x y w V x y w V x y

= − + + + −

+ + + +

+ + +

 (2.10)

A similar process is repeated for the horizontal and diagonal subbands. As an example,

the predictor for the green channel takes the form:

32

1 2 3

4 5 6

7 8 9

(,) (1,) (1,) (, 1)

(, 1) (2, 2) (,)

(2, 2) (,) (,)

g g g g
i i i i

g g g
i i i

g r b
i i i

H x y w H x y w H x y w H x y

w H x y w H x y w D x y

w D x y w H x y w H x y

= − + + + −

+ + + +

+ + +

 (2.11)

1 2 3

4 5 6

7 8 9

(,) (1,) (1,) (, 1)

(, 1) (2, 2) (,)

(,) (,) (,)

g g g g
i i i i

g g g
i i i

g r b
i i i

D x y w D x y w D x y w D x y

w D x y w D x y w H x y

w V x y w D x y w D x y

= − + + + −

+ + + +

+ + +

 (2.12)

For the horizontal and diagonal subbands, the predictor for the red and blue channels are

determined in a similar way as was done for the vertical subbands, Equations (2.9) and

(2.10). For each oriented, scale and color subband, a similar error metric, Equation (2.11),

and error statistics are computed.

For a multi-scale decomposition with scales i = 1,…,s, the total number of basic

coefficient statistics is 36(s - 1) (12(s - 1) per color channel), and the total number of

error statistics is also 36(s - 1), yielding a grand total of 72(s - 1) statistics. These

statistics form the feature vectors to be used to discriminate between images with and

without hidden messages. The set of 72 features representing an input image are used in

Chapter 4 as a subset of 526 features for the steganalysis detection system in this

research.

2.2.2 DCT Features

In this method two types of features are calculated over an image, i.e., first order features

and second order features. The following explanation of the generated features in the

DCT and spatial domains are from Fridrich, (2004). A vector functional F is applied to

the stego JPEG image J1. The stego image J1 is de-compressed to the spatial domain,

cropped by 4 pixels in each direction, and recompressed with the same quantization table

33

used in decompressing J1 to obtain J2, as shown in Figure 2.7. The vector functional F is

then applied to J2. The L1 norm is defined for a vector/ matrix as a sum of absolute values

of all vector/matrix elements. The final feature f is obtained as an L1 norm of the

difference in the vector functional between the original and modified image as follows:

() ()
1

1 2 L
f F J F J= − (2.13)

Figure 2.7. Feature generating structure.

First Order Features - The simplest first order statistic of DCT coefficients is their

histogram. Representing the JPEG image with a DCT coefficient array dk(u,v) and a

quantization matrix Q(u,v), where u,v = 1,…,8, k = 1, …, B. The symbol dk(u,v) denotes

the u,vth quantized DCT coefficient in the kth block, there are total of B blocks. The global

histogram of all 64 k DCT coefficients is denoted as Hr, where r = L, …, R, L = mink,i,j

dk(u,v) and R = maxk,i,j dk(u,v).

There are steganographic programs that preserve the histogram. Thus, individual

histograms for low frequency DCT modes are added to the set of functionals. For a fixed

DCT mode (u,v), let , r = L,…, R, denote the individual histogram of values dk(u,v), k = 1,

…, B. Only histograms of low frequency DCT coefficients are used because histograms

4 pixels

Spatial Domain - I(x,y)

jpeg
file

jpeg
file

J1 J2

() ()
1

1 2 L
f F J F J= −

34

of coefficients from medium and higher frequencies are usually statistically unimportant

due to the small number of non-zero coefficients.

To provide additional first order macroscopic statistics to the set of functionals, dual

histograms have been included. For a fixed coefficient value d, the dual histogram is an

8×8 matrix guv
d

()()
1

, ,
B

d
uv k

k

g d d u vδ
=

= ∑ (2.14)

where δ(d, dk(u,v))=1 if u=v and 0 otherwise.

Second Order Features - Let Ir and Ic denote the vectors of block indices while scanning

the image “by rows” and “by columns”, respectively. The first functional capturing inter-

block dependency is the “variation” V defined as

() () () () () () () ()
118 8

1 1
, 1 1 , 1 1

, , , ,
cr

r r c c

II

I k I k I k I k
u v k u v k

r c

d u v d u v d u v d u v
V

I I

−−

+ +
= = = =

− + −
=

+

∑ ∑ ∑ ∑
. (2.15)

Most steganographic techniques in some sense add entropy to the array of quantized DCT

coefficients and thus are more likely to increase the variation V than decrease.

Embedding changes also increase the discontinuities along the 8×8 block boundaries.

Two blockiness measures Bα, α = 1, 2, have been included to the set of functionals. The

blockiness is calculated from the decompressed JPEG image (spatial domain) and thus

represents an integral measure of inter-block dependency over all DCT modes over the

whole image:

35

() ()
()

() ()
()

() ()

1 /8 1 /8

1 1 1 1
8 , 8 1, ,8 ,8 1

1 /8 1 /8

M NN M

x y x y
I x y I x y I x y I x y

B
N M M N

α α

α

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= = = =

− + + − +
=

− + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑ ∑
. (2.16)

In the expression above, M and N are image dimensions and I(x,y) are grayscale values of

the decompressed JPEG image.

The final three functionals are calculated from the co-occurrence matrix of neighboring

DCT coefficients. Recalling the notation, L ≤ dk(u,v) ≤ R, the co-occurrence matrix C is a

square D×D matrix, D = R – L + 1, defined as follows

() ()() () ()()

() ()() () ()()

1 8

1
1 , 1

1 8

1
1 , 1

, , , ,

, , , ,

r

r r

c

c c

I

I k I k
k u v

st
r c

I

I k I k
k u v

r c

s d u v t d u v
C

I I

s d u v t d u v

I I

δ δ

δ δ

−

+
= =

−

+
= =

=
+

+
+

∑ ∑

∑ ∑
. (2.17)

The co-occurrence matrix describes the probability distribution of pairs of neighboring

DCT coefficients. It usually has a sharp peak at (0,0) and then quickly falls off. Let C(J1)

and C(J2) be the co-occurrence matrices for the JPEG image J1 and its calibrated version

J2, respectively. Due to the approximate symmetry of Cst around (s,t) = (0, 0), the

differences Cst(J1) – Cst(J2) for (s,t)∈{(0,1), (1,0), (–1,0), (0,–1)} are strongly correlated.

The same is true for the group (s,t)∈{(1,1), (–1,1), (1,–1), (–1,–1)}. For practically all

steganographic schemes, the embedding changes to DCT coefficients make perturbations

by some small value. Thus, the co-occurrence matrix for the embedded image can be

obtained as a convolution CP(q), where P is the probability distribution of the embedding

distortion, which depends on the relative message length q. This means that the values of

36

the co-occurrence matrix CP(q) will be more “spread out”. To quantify this spreading,

the following three quantities are taken as features:

N00= C0,0(J1)–C0,0(J2)

N01= C0,1(J1)–C0,1(J2)+C1,0(J1)–C1,0(J2)+C–1,0(J1)–C–1,0(J2)+C0,–1(J1)–C0,–1(J2)

N11= C1,1(J1)–C1,1(J2)+C1,–1(J1)–C1,–1(J2)+C–1,1(J1)–C–1,1(J2)+C–1,–1(J1)–C–1,–1(J2) .

The final set of 20 vector functionals used in this method is summarized in Table 2.1.

Three additional features are listed in the bottom of Table 2.1.

Table 2.1. All 23 distinguishing functionals.
Functional/Feature Name Functional F(⋅)

Global Histogram
1

/
L

H H

Individual Histogram for
5 DCT Modes

1 1 1 1 1

21 31 12 22 13

21 31 12 22 13
, , , ,

L L L L L

h h h h h
h h h h h

Dual Histograms for 11
DCT Values (-5,…,5)

1 1 1 1

5 4 4 5

5 4 4 5
, ,..., ,

L L L L

g g g g
g g g g

− −

− −

Variation V
L1 and L2 Blockiness B1,B2

Co-occurrence N00,N01,N11 (features not functionals)

The features in Table 2.1 are extended from 23 to 193 by analyzing DCT coefficients in

the range of -5 to 5 (Pevny and Fridrich, 2007). Apply the cropping technique in Figure

2.7 with a Markov process an additional 81 features are created for a total of 274 features

(Pevny and Fridrich, 2007). The set of 274 features representing an input image are used

in Chapter 4 as a subset of 526 features for the steganalysis detection system in this

research.

37

2.3 Feature Preprocessing

After features are generated it is necessary to preprocess the features that are to be used

for classification. In many practical situations the classification model may receive input

features whose values lie within different dynamic ranges. Thus, features with large

values may inadvertently influence classification over features with small values.

Another problem arises when a particular sample is not within the same area as the other

features. To resolve these issues the feature preprocessing methods used in this research

are data normalization (Theodoridis and Koutroumbas, 2006, pp. 214-215), data

standardization (Dillon and Goldstein, 1984, pp. 12-13) and outlier removal (Barnett and

Lewis, 1994). The training vectors in this section are represented by x = [x1,x2,…,x] ∈

n with a dimension of n and the number of sample defined as .

2.3.1 Data Preparation

Data preparation scales the features so that they have similar magnitudes. Some of the

procedures used for data preparation are feature standardization (Dillon and Goldstein,

1984, pp. 12-13), feature min-max normalization (Theodoridis and Koutroumbas, 2006,

pp. 214-215), min-max global normalization (Guyon et al., 2006, pp. 254), sigmoid

normalization (Theodoridis and Koutroumbas, 2006, pp. 214-215) and softmax scaling

(Theodoridis and Koutroumbas, 2006, pp. 214-215). We use zero-mean normalization

(feature standardization) and min-max normalization (feature normalization) and describe

them in more details.

Min-max normalization performs a linear scaling on the original data. The

normalization is calculated by estimates of the minimum and maximum of the values.

The normalization technique is defined for the available data samples and the kth feature

as:

38

()
() ()()min

ˆ , 1, 2,...,
max() min

ik k
ik

k k

x x
x b a a k n

x x
−

= − + =
−

 (2.18)

where a and b are scaling factors. When a = 0 and b = 1 the individual feature values are

in the range of [0,1]. In the event that the denominator of Equation (2.18) is equal to zero

that feature is removed, avoiding the potential of normalizing a feature of constants.

Z-score normalization (Standardization) is based on the mean and standard deviation

of each feature. Each feature in this method is separately standardized by subtracting its

mean and dividing by the standard deviation as follows:

ˆ , 1, 2,...,ik k
ik

k

xx kμ
σ
−

= = (2.20)

where μk and σk are defined as:

1

1
k ik

i

xμ
=

= ∑

 (2.21)

()22

1

1
1

σ μ
=

= −
− ∑k ik k

i
x (2.22)

and is the number of samples. In the event that the standard deviation of a particular

feature is zero (e.g., each element of the observed feature is a constant value), the feature

is discarded.

39

2.3.2 Outlier Removal

An outlier is defined as a sample that is inconsistent with the existing sample distribution.

The inconsistency is defined by the analyst observing the input data. Outliers can be

discarded if the number of samples is small in comparison with the remaining samples,

e.g., one or two samples. Various guides are provided by Barnett and Lewis (1994) to

determine a small number of outliers. When a large number of outliers exist, care must be

taken by the analyst. In this case, the classification model may have to be trained to

accommodate the presence of outliers, e.g., expectation maximization can be trained

using ellipsoids. Two outlier removal techniques are used in the case of multivariate

outliers in this section. The first is a technique in which the mean is used to identify an

upper and lower boundary of a confidence interval to identify an outlier and remove the

sample (Barnett and Lewis, 1994). The second is a multivariate outlier technique

presented by Wilks (1963).

Confidence Interval Outlier Removal – In confidence interval outlier removal, any

sample outside of the confidence interval is considered an outlier. This method assumes

the data is normally distributed and generates a confidence interval for each feature. The

first step identifies an upper and lower limit means from the global mean as follows:

1 ,
upper

upper i i
i Supper

for
S

μ μ
∈

= >∑ x x (2.23)

1 ,
lower

lower i i
i Slower

for
S

μ μ
∈

= <∑ x x (2.24)

where μ is the global mean vector

1

1
i

i
μ

=

= ∑x (2.25)

40

where is the number of samples, Supper and Slower are the number of samples meeting the

criteria xi > μ and xi < μ, respectively. The term i ∈ Slower and i ∈ Supper indicate the

indices when the criteria xi < μ and xi > μ are met. This now leads to the confidence

interval defined as:

()() ()(),lower lower upper upperμ α μ μ μ α μ μ⎡ ⎤− − + −⎣ ⎦ (2.26)

where α is the parameter set by the user. A good starting point is α = 0.5 allowing the

parameter to be adjusted based on the data set being analyzed. The terms multiplied by α

in Equation (2.26) can be replaced by the critical of the t-distribution as described by

Barnett and Lewis (1994, page 74) providing robustness of validity for the confidence

interval. Another alternate modification to Equation (2.26) is to simply replace (μ −

μlower) by the standard deviation of μlower and (μupper − μ) by the standard deviation of

μupper allowing the standard deviation to determine the confidence interval.

Wilks’ Outlier Removal – Wilks' outlier removal technique uses an upper bound for

detection of a single outlier from a set of normal multivariate samples in which the

maximum squared Mahalanobis distance (Equation (2.27)) approaches an F distribution

(Wilks, 1963).

() ()2 1 T
i i iD μ μ−= − Σ −x x (2.27)

In multivariate outlier detection the normality between samples is assessed. A partial

mathematical description is provided by Rencher (2002, pp. 101-104) and expanded in

application by Trujillo-Ortiz, et al. (2008).

41

Determining the threshold is defined by the F distribution critical value (inverse of F

cumulative distribution function) with n and (-n-1) degrees of freedom using the

Bonferroni correction (Bonferroni, 1935; 1936). The final critical value is defined by:

()
() ()

21
1v

n
C

n nF
−

=
− − +

 (2.28)

The index of an outlier(s) is identified by the following criteria:

2
i vD C≥ (2.29)

This method is provided in full detail by Trujillo-Ortiz, et al. (2008).

2.4 Feature Extraction

Feature extraction maps the input samples, x, from the input feature space x ∈ n to a

new feature space z ∈ p, where n > p, features are extracted. In this case, the

classification is based on the samples in the new feature space, z, rather than on the input

feature space. The advantage of feature extraction over feature selection is that no

information from any of the elements of the input feature is lost. In certain situations

feature extraction may be easier to calculate than feature selection. In this section two

feature extraction methods are discussed, principal component analysis (PCA) where the

new feature space z ∈ m and kernel PCA where the feature space ẑ ∈ p.

42

2.4.1 Principal Component Analysis (PCA)

The idea of feature extraction using PCA (Hotelling, 1933) is to represent a new space in

a way to extract mutually uncorrelated features from the current space. The new features

are known as the principal components after transform mapping. The dimensionality

assessment is accomplished by extracting the principal components from the correlation

matrix and retaining only the factors described in Kaiser’s criterion (eigenvalues: λ ≥ 1)

(Kaiser, 1960). The criterion is used as a guide line to determine the number of principal

components to retain by calculating the correlation matrix of the input features. Each

observed variable contributes one unit of variance to the total variance in the data set.

Hence, any principal component that has an eigenvalue, λ, greater than one accounts for a

greater amount of variance than had been contributed by one variable. Additionally, a

principal component that displays an eigenvalue less than one indicates less variance than

had been contributed by one variable. The covariance matrix, ∑, is used to extract

eigenvectors, e, retaining only the number of principal components corresponding to

Kaiser’s criterion.

The basic concept of feature extraction using PCA is to map x onto a new space capable

of reducing the dimensionality of the input space. The data is partitioned by variance

using a linear combination of ‘original’ factors. To perform PCA, let x = [x1, x2,…,x] ∈

n be a set of training vectors from the n-dimensional input space n. The set of vectors z

= [z1,z2,…,z] ∈ m is a lower dimensional representation of the input training vectors x

in the m-dimensional space m. The vectors z are obtained by the linear orthonormal

projection

()T μ= −z A x (2.30)

43

where A is an [n × m] matrix containing the top m eigenvectors and μ is the mean of the

each set of features from x.

2.4.2 Kernel PCA

The Kernel Principal Component Analysis (Kernel PCA) is the non-linear extension of

the ordinary linear PCA (Scholkopf et al., 1998). The input training vectors x = [x1,

x2,…,x] ∈ n are mapped by a nonlinear transformation φ(⋅): X→F to a new dimensional

feature space F ∈ . The mapping φ(⋅) is represented in the kernel PCA by a kernel

function K(⋅,⋅) which defines an inner product in . This yields a non-linear (kernel)

projection of data which has a general definition as

()ˆˆ , b= +z A x xT
i jK (2.31)

where Â is an [× p] matrix containing the top p values, b is a bias vector and ẑ ∈ p is

the vector of extracted features. The eigenvectors are not computed directly from the

kernel matrix K(⋅,⋅). The kernel matrix must be centered as follows:

() [] () () [] [] () [], 1 , , 1 1 , 1c i j i j i j i jK K K K× × × ×= − − +K x x x x x x x x (2.32)

where 1[×] is a [×] matrix in which every value is 1/ . The eigenvalues, λ, and

eigenvectors, e, are determined with the use of Kc. The bias vector b is computed as:

[] () () []()ˆ 1 , 1 , 1b × ×= −A x x x xT
i j i jK K (2.33)

44

where 1 is an [×1] vector with each element equal to 1/ .

2.5 Feature Ranking/Selection

When a decision problem has an extremely large number of features, often a

classification algorithm has difficulty identifying the best features to use for

classification. For this reason one step in the classification process is the identification of

features that retain as much class discriminatory information as possible. This procedure

is known as feature ranking/selection or reduction. A first step in feature

ranking/selection is to look at each of the feature independently and test its

discriminatory capability for the problem. Although looking at the features independently

is far from optimal, this procedure helps to discard features that do not separate the

classes. In this section, five ranking methods are described which are used in this

research, Bhattacharyya distance, Fisher’s discriminant ratio, signal to noise ratio, kernel

Fisher’s discriminant feature ranking and zero-norm feature ranking. The selection of

vital features for each of these methods is determined by the user based on either a

ranking value threshold or the classification accuracy of a selected subset of top ranked

features.

2.5.1 Bhattacharyya Distance

The Bhattacharyya distance is used as a class separability measure. For two-class normal

distributions the Bhattacharyya distance is defined as:

() ()
1 11

1 1
1 1 1 1

1 1

| |1 1 2ln
8 2 2 | || |

μ μ μ μ
− +−

− +
− + − +

− +

Σ + Σ
Σ + Σ⎛ ⎞= − − +⎜ ⎟ Σ Σ⎝ ⎠

TB (2.34)

45

where | ⋅ | denotes the determinant of the respective matrix. The Bhattacharyya distance

corresponds to the optimum Chernoff bound when 1 1− +Σ = Σ . It is readily seen that in this

case the Bhattacharya distance becomes proportional to the Mahalanobis distance

between the means. It should be noted that the Bhattacharya distance consists of two

terms. The first term gives the class separability due to the mean difference and

disappears when 1 1μ μ− += . The second term gives the class separability due to the

covariance difference and disappears when 1 1− +Σ = Σ (Fukunaga, 1990).

The Bhattacharyya distance for the multi-class case is represented as:

() ()
1 2 21 1 ln ,

8 2 2 2
T i j i j

ij i j i j
i j

B i j
σ σ σ σ

μ μ μ μ
σ σ

− ⎛ ⎞+ +⎛ ⎞
= − − + ≠⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (2.35)

where i, j ∈ in this case corresponding to the classes C = Cj = [C1,C2,…,Cc], j =

1,2,…,c. In this case for each feature an individual class is compared to the remaining

classes based on distance. The features are assigned a ranking value according to the

greatest distance between classes.

2.5.2 Fisher’s Linear Discriminant Ratio (FDR/F-Score)

The FDR is used to quantify the separability capabilities of individual features (Fisher,

1936). FDR is a simple technique which measures the discrimination of sets of real

numbers. The within-class scatter matrix is defined as

= ∑ C C
C

WS P S (2.36)

where Sc is the covariance matrix for class C ∈ {-1,+1}

46

()()
1

μ μ
=
∈

= − −∑
C

C C C

C

x x T
i i

i
i

S (2.37)

and PC is the a priori probability of class C. That is, PC ≈ C/ , where C is the number of

samples in class C, out of a total of samples. The between-class scatter matrix is

defined as

() ()μ μ μ μ= − −∑ C C C
C

T
BS P (2.38)

where μ is the global mean vector

1

1
i

i

μ
=

= ∑x (2.39)

and the class mean vectors μC is defined as

1

1μ
=
∈

= ∑
C

C
C

C

xi
i
i

. (2.40)

These criteria take a special form in the one-dimensional, two-class problem. In this case,

it is easy to see that for equiprobable classes W| |S is proportional to 2 2
1 1σ σ− ++

and B| |S proportional to ()2
1 1μ μ− +− . Combining SB and SW, the Fisher’s Discriminant

ratio results in the following equation

FDR = ()2
1 2
2 2
1 2

μ μ
σ σ

−
+

. (2.41)

47

FDR is sometimes used to quantify the separability capabilities of individual features. For

the multi-class case, averaging forms of FDR can be used. One possibility is

FDR =
()2

2 2

M M
i j

i j i i j

μ μ
σ σ≠

−

+∑∑ (2.42)

where the subscripts i, j refer to the mean and variance corresponding to the feature under

investigation for the classes Ci, Cj , respectively.

For the one-dimensional multi-class case, the Fisher’s discriminant ratio is modified as:

()2

2 2
i j

ij
i j

FDR
μ μ
σ σ

−

+
 = (2.43)

2.5.3 Signal-to-Noise Feature Selection

One method for neural networks feature selection uses a signal-to-noise ratio (SNR)

saliency measure (Bauer et al., 2000). This measure directly compares the saliency of a

feature to that of an injected noise feature. The SNR saliency measure is computed using

the following:

()

()

21
,

1
10 21

,
1

10 log

J

i j
j

i J

N j
j

w
SNR

w

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
 (2.44)

where SNRi is the value of the SNR saliency measure for feature i, J is the number of

hidden nodes, 1
,i jw is the first layer weight from node i to node j, and 1

,N jw is the first layer

48

weight from the injected noise node N to node j. The weights, 1
,N jw for the noise feature

are initialized and updated in the same fashion as the weights, 1
,i jw emanating from the

other features in the first layer. The injected noise feature is created such that its

distribution follows that of a Uniform (0,1) random variable. The SNR screening method

potentially requires only a single training run, because the SNR saliency measure appears

highly robust relative to the effects of weight initialization. For the classification method

probabilistic neural network described in Chapter 3, this method is used to determine the

appropriate subset of features.

2.5.4 Kernel Fisher’s Recursive Feature Elimination

The SVM-RFE (Guyon et al., 2002) discussed in Section 2.1 is extended to the kernel

Fisher’s discriminant (KFD) for feature ranking. The method in this subsection starts

with all n available features, and performs KFD on the kernel space alpha vectors α

(Louw and Steel, 2006). The feature ranking value for the kernel Fisher’s recursive

feature elimination (KF-RFE) is calculated as

()

()

mT

m mT

MR
N

=
α α
α α

 (2.45)

where

() () ()() () ()()
() () ()

() () ()

1

1

1

1

1 1 1 1

1
11

1
11

1 ,

1 ,

−

−

+

+

− + − +

−
=−
∈

+
=+
∈

= − −

=

=

∑

∑

x x

x x

Tm m m m m

m m
i j

j
j C

m m
i j

j
j C

M M M M M

M K

M K

 (2.46)

49

and

 () () () () ()
1

1, ,
=
∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑

C

C
C

x x x x
Tm m m

i j i j
j
j

N K I K

(2.47)

where C = {C-1, C+1} = {-1, +1}. The KF-RFE algorithm consists of the following steps:

1. Calculate the alpha values as:

 ()1 1 /M M Nα − += −

2. For the number of input features n initialize the feature dimensionality as ñ = n,

perform steps 3 through 6, n times.

3. For the number of input features ñ perform steps 3 through 5, ñ times.

4. Assign ranking values Rm by calculating Equation (2.45), removing one feature at

a time at location m.

5. Sort the ranking values Rm removing the highest ranked feature, storing the index

of the removed feature and assign the new dimension as ñ ← ñ-1.

2.5.5 Zero-Norm Feature Ranking

Weston, et al. (2003) proposed a zero-norm feature ranking method capable of

identifying features that are close to linear separation. This method was extended to the

nonlinear case by using support vector machines with kernels capable of separating non-

linear features. The nonlinear feature selection method calculates ranking values (Rm) as

follows:

() () ()()
,

, ,m
m k j k j k j k j

k j
R y y K Kα α= ∑ x x x xi (2.48)

where (•) in this method is a point by point multiplication of the two kernel matrices. The

zero-norm feature ranking algorithm consists of the following steps:

50

1. Initialize the weights, ŵ, to ones.

2. Weight x by the weights ŵ, x ← x • ŵ.

3. Using the selected SVM model identify the alpha values,α, and support vectors, xk.

4. Calculate Equation (2.48).

5. Calculate the new weights ŵ ← ŵ |max(Rm) - Rm|T.

6. Sort the weights ŵ, identify the weights that are less than a set threshold, remove

the features corresponding to the identified weights, and store the index of the

ranked feature.

7. Repeat steps 2 through 6 until the maximum number of iterations is met or all of

the features have been ranked.

The threshold used in step 6 is set to the maximum ŵ divided by 103 (Weston et al.,

2006). The remaining weights ŵ for the nonlinear case should be normalized between

zero and one to avoid an unnecessary feature increase in step 2. The maximum number of

iterations, 20 (Weston et al., 2006), in step 7 avoids calculating n number of SVM models

in step 3.

2.6 Classification

Machine learning for a classification task involves training over a set of samples x = [x1,

x2,…,x]T ∈ n. Each sample in the training set contains one target value C = Cj =

[C1,C2,…,Cc], j = 1,2,…,c, (known as the class labels yi ∈ C, i = 1,2,…,) which

describes the class to which the sample is a member of. The objective is to separate the

data into their classes such that the degree of association is strong between the data sets

of the same class and weak between members of different classes. From the class

separation, an unseen sample x0 ∈ n can then be appropriately classified. In this section

six classification methods are presented, expectation maximization with mixture models

(EM), k-nearest neighbors (k-NN), kernel Fisher’s discriminant (KFD), Parzen window,

probabilistic neural networks (PNN) and support vector machines (SVM).

51

2.6.1 Expectation Maximization (EM)

The idea behind the EM algorithm (Dempster et al., 1977) is that even though the data

values of x, feature vectors x ∈ n, are unknown/incomplete the distribution f(x|p) can be

used to determine an estimate for the maximum likelihood (Tomasi, 2006). In maximum

likelihood estimation, the estimate to be modeled is the parameter(s) for which the

observed data are the most likely. This is done by iteratively estimating the data

parameters, then using the data to update the estimated parameters, until a desired

convergence is met. The two major steps of the EM algorithm are the expectation step (E-

Step) and the maximization step (M-Step).

The EM algorithm consists of choosing initial parameters for the means, ()j
kμ , standard

deviations, ()j
kσ , and mixing probabilities, () ()|jp k , for a user defined number of

clusters, k, then performing the E-Step and M-Step successively until convergence, where

i is the current iteration and n is the number of samples. The convergence criteria is

determined by examining when the parameters quit changing, i.e., when () ()1j j
k kμ μ +− <ε

& () ()1j j
k kσ σ +− < ε & () () () ()1| |j jp k p k+− < ε for some epsilon (ε) and distance

calculation (Euclidian distance). The maximum likelihood estimation is a method of

estimating the parameters of the distributions based upon the observed data.

The expectation step (E-Step) calculates the membership probabilities, ()|p k (Tomasi,

2006). The mixing probabilities kp are viewed as the sample mean of the membership

probabilities ()|p k assuming a uniform distribution over all the data points. The

Gaussian function, ()(); ,i i
k kg μ σ ()x , is used to compute mixture of Gaussian functions as

shown in the denominator of ()|p k .

52

() ()
()

() ()
()

() ()

1

; ,
|

; ,

j j j
k kj

K
j j i

k k k
k

p g
p k

p g

κμ σ

μ σ

()

()

=

=

∑

x

x
 (2.49)

()
()

2
1
2() 1; ,

2

k

kj j
k n

k

g e
μ

σ
κμ σ

πσ

⎛ − ⎞
− ⎜ ⎟⎜ ⎟() ⎝ ⎠=

x

x (2.50)

The maximization step (M-Step) uses the data from the expectation step as if it were

measured data to determine the maximum likelihood estimate of the parameter (Tomasi,

2006). This estimated data is often referred to as the “imputed” data. This step is

dependent upon the membership probabilities ()|p k which are computed in the E-

Step. The EM algorithm consists of iterating the mean, standard deviation, and mixing

probabilities until convergence. The mixing probabilities are the sample mean of the

conditional probabilities ()|p k assuming a uniform distribution over all the data

points.

()

()
(1) 1

1

|

|

j
i

j i
k

j

i

p k i

p k i
μ + =

=

=
∑

∑

x
 (2.51)

()

()

2(1)

(1) 1

1

|
1

|

j j
i k

j i
k

j

i

p k i

D p k i

μ
σ

+

+ =

=

−
=

∑

∑

x
 (2.52)

()(1)

1

1 |j j
k

i

p p k i+

=

= ∑ (2.53)

53

2.6.1.1 Mixture Models

In mixture models, also known as model-based Gaussian clustering, the multivariate

Gaussian normal is used as a density function similarly described in Equation (2.50). The

general multivariate normal density for n dimensions is

()
() ()

()

1

1/2

1exp
2; ,

2

T
k k k

k k n

k

g
μ μ

μ
π

−⎛ ⎞− − ∑ −⎜ ⎟
⎝ ⎠∑ =

∑

x x
x . (2.54)

The geometric characteristics (size, shape and orientation) of the clusters are determined

by the covariance matrix Σk which is generated in terms of eigenvalue decomposition

described in Martinez and Martinez (2002). The decomposition of the covariance matrix

Σk is used as a suitable model for the geometric characteristics of the cluster. The

structure of the covariance matrix is as follows:

λΣ = D A DT
k k k k k (2.55)

where λk is a scalar, Dk is the orthogonal matrix of eigenvectors and Ak is a diagonal

matrix whose elements are proportional to the eigenvalues of Σk. Note that in EM the

values pk, μk, and σk are updated after each iteration and in the mixture models σk is

replaced by Σk to represent the geometric characteristics of the clusters.

The eigenvalue decomposition can be modeled as various clustering arrangements.

Celeux and Govaert (1995), describe in detail fourteen models based on the eigenvalue

decomposition. Allowing for variations in the orientation, volume, shape and size of the

clusters; six of these models are shown in Table 2.2 (Martinez and Martinez, 2002).

54

Table 2.2. Parameterization for mixture models.

Model kΣ Geometric
Shape Volume Shape Orientation

1 λI Spherical Equal Equal NA
2 kλ I Spherical Variable Equal NA
3 TλDAD Ellipsoid Equal Equal Equal
4 T

k k k kλ D A D Ellipsoid Variable Variable Variable
5 T

k kλD AD Ellipsoid Equal Equal Variable
6 T

k k kλ D AD Ellipsoid Variable Equal Variable

The eigenvalue decomposition can be modeled as various clustering arrangements, i.e.,

spheres, ellipsoids and rotations of ellipsoids. Allowing the orientation, volume, shape

and size of the clusters define the various models used. Figure 2.8 shows the mixture

model using rotated ellipsoids (Model 4) to generate the decision boundary around each

class.

Figure 2.8. Expectation Maximization using mixture models with Decision Boundary.

55

2.6.1.2 Bayes Classifier

The EM algorithm can be used to find a class label for an input sample. Classification

uses input samples described by feature vectors x0 ∈ n to assign the samples to a given

class C = Cj = [C1,C2,…,Cc], j = 1,2,…,c. The Bayes classifier extends a general

multivariate normal case where the covariance matrix Σj for each class is different. For

the multi-class classifier each class must have individual conditional probability densities

where the densities are modeled as normal distributions. The classes Cj are defined as

normal distributions centered about the mean vector μj. The mean vector, μj, and the

covariance matrix, Σj, are calculated using the EM algorithm. The vector x0 is a n-

dimensional vector of the observed data, and |Σi| and Σ-1
i are the determinants and inverse

covariance matrix of the given class. The posterior probability of class membership can

be calculated by Bayes rule if Cj is defined as the event of belonging to population j.

Using the density function ()(); ,i i
k kg μ σ ()x (Tomasi, 2006), the Bayes classifier can be

expressed in terms of the prior probabilities, P(Ci), and posterior probability of class

membership as follows:

()
() () ()

() () ()

1
0 0

0
1

0 0
1

1 1exp
2(2)

|
1 1exp

2(2)

μ μ
π

μ μ
π

−

−

=

⎡ ⎤− − Σ −⎢ ⎥⎣ ⎦Σ
=

⎡ ⎤− − Σ −⎢ ⎥⎣ ⎦Σ
∑

x x

x
x x

T

j j j jn
j

j c T
i i i in

i i

P C

P C
P C

 (2.56)

where the a priori probabilities P(Cj) are the estimates of belonging to a class and under

the assumption that Σj=Σ for ∀ j.

56

2.6.2 k-Nearest Neighbors

k-Nearest Neighbors, Figure 2.9, is a lazy learning approach that compares new samples

with all of the samples in the training set, looking for the kth nearest (Cover and Hart,

1967; Duda et al., 2001; Bishop, 2006).

Figure 2.9. k-NN Decision Boundary.

Let the vectors x = [x1,x2,…,x]T ∈ n and class labels yi ∈ C = [C1,C2,…,Cc], c ∈ Z, i =

1,2,…, , be a set of training vectors. Given an unknown feature vector x0 and a distance

measure, the algorithm for the k-nearest neighbor rule is as follows (Theodoridis and

Koutroumbas, 2006):

 Out of the training vectors x, identify the k-nearest neighbors, irrespective of

class label. k is chosen to be odd for a two-class problem, and in general not to be

a multiple of the number of classes.

 Out of the k samples, identify the number of vectors, kj, that belong to class C,

where j
j

k k=∑ .

57

 Assign x0 to the class C with the maximum number of kj of samples.

The distance measures used from the feature xi to each of its k-nearest neighbors include

the Euclidian and Mahalanobis. The advantage of k-nearest neighbor is the simplicity of

the assignment procedure. The disadvantage of the method lies in the necessity to store

all samples and compare each with an unknown sample (Fukunaga, 1990).

2.6.3 Kernel Fisher’s Discriminant (KFD)

The kernel Fisher discriminant is the non-linear extension of the linear FLD (Jaakola and

Haussler, 1998; Mika et al., 1999; Scholkopf and Smola, 2002). In the linear case,

Fisher’s discriminant is computed by maximizing the coefficients of the following

equation

()
T

B
T

W

SJ
S

=
w ww
w w

 (2.57)

To use the Fisher’s discriminant for nonlinearly separable data Mika, et al. (1999) map

the input feature space with the use of a kernel. The input space is represented by a

training set xi of vectors with a feature dimensionality of n. The corresponding class

labels are represented as yi ∈ C, where C = [C-1, C+1] = [-1, +1], i = 1,2,…, and is the

training set size. The basic idea is to first map the input features from the input space to

the kernel space via a kernel function and then perform linear FLD. The aim is to find a

direction w = ∑iαiφ(xi) from the feature space to the kernel space given by alpha vectors

α = [α1,…,α]T (Mika et al., 1999). Using the definitions of SB and SW the Fisher’s linear

discriminant in the mapped feature space can be defined as

58

()
T

T

MJ
N

=
α αα
α α

 (2.58)

where M = (M-1-M+1)(M-1-M+1)T is a [×] matrix,

()

()

1

1

1

1

1
11

1
11

1 ,

1 ,

−

−

+

+

−
=−
∈

+
=+
∈

=

=

∑

∑

x x

x x

i j
j
j C

i j
j
j C

M K

M K
 (2.59)

and

 () ()
1

1, ,
=
∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑

C

C
C

x x x x
T

i j i j
j
j

N K I K

(2.60)

where C = {C-1, C+1} = {-1, +1}.

In (Mika et al., 1999), numerical issues and regularization are discussed regarding the

calculation of (2.60). This is resolved by simply adding a multiple of the identity matrix

to N defined as:

N N Iμ μ= + . (2.61)

The next step is to use the alpha vectors and the kernel matrix to project the n-1

dimensional input feature space into a one dimensional space as follows:

()x̂ , α= x xi jK . (2.62)

59

The projection in (2.61) now becomes the space that is to be solved using an optimization

solution to maximize the margin of separation between classes as shown in Figure 2.10.

In (Mika et al., 1999), the Matlab Optimization Toolbox (2004) is used to solve the

optimization problem (Scholkopf and Smola, 2002) with the projected space calculated in

(2.62). In this research the one dimensional SMO (Franc and Hlavac, 2007) is used as the

optimization solution. This results in the non-negative alpha vectors ()1ˆ ˆ ˆ,...,iα α α= with

an upper bound Ĉ, ˆ ˆ 0α≥ ≥C . The support vectors for the KFD trained model are xk = xi

and the decision function of the KFD classifier is written as sign(f(x)) where f(x) is

defined by:

() () ()
1

ˆ ,i i i
i

f b y K bφ α
=

= + = +∑x w x x x . (2.63)

This is equivalent to the maximal margin hyperplane in the input space defined by the

kernel (Cristianini and Shawe-Taylor, 2000). The goal of the KFD is to solve for α and

the bias b. To compute the bias b, Equation (2.63) is rewritten as follows:

()
1

,
s

k k k i i
k

y K b yα
=

+ =∑ x x . (2.64)

Therefore, the bias is calculated by obtaining the average as (Scholkopf and Smola,

2002):

()
1 1

1 ,
s

i k k k i
i k

b y y Kα
= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ x x (2.65)

60

In order to reduce the number of false positives and false negatives the optimal bias in

(2.65) can be adjusted accordingly. In this case the bias is a threshold (Scholkopf and

Smola, 2002).

Figure 2.10. KFD Decision Boundary using RBF Kernel.

2.6.4 Parzen Window

Parzen estimation is a refinement of histogramming (Parzen, 1962; Fukunaga, 1990;

Duda et al., 2001; Bishop, 2006). The basic idea behind Parzen window estimation is that

the knowledge gained by each training sample x of the input space, n, is represented by

a function centered at x in the feature space. The functions themselves are represented

with the use of a distance measure or a kernel estimator. The final class estimation is

derived by summing the results from the kernel functions of each training sample:

()
1

1 , x
k

k i
ik

p K
=

= ∑ x . (2.66)

61

For example, the Parzen window density model is optimized by maximizing the

likelihood of the training data with the use of a Gaussian window surrounding each input

data point. The Gaussian window can be represented with the use of a kernel function

K(x,xi) as an interpolation function which defines an inner product between the individual

training sample. The Radial Basis kernel function uses a window width parameter,σ,

which is also known as the spread of the function:

()

2

2
1

x1 1 exp
22

k

k k

i
k

ik

p
σπ σ=

⎛ ⎞−
= ⎜ − ⎟

⎜ ⎟
⎝ ⎠

∑
x

. (2.67)

This results in a sum of small multivariate Gaussian probability distributions centered at

each training sample x, an example is shown in Figure 2.11. As the density of the training

samples and their respective Gaussian distributions increase the estimation of the

probabilities approach the true probability density function (PDF) of the training samples.

The estimation for classification for a data cluster is then based on a threshold set for the

combined posterior probability from all samples. The classification decision assigns the

samples to the class with maximal posterior probability according to the inequality:

() ()

2 2

2 2
1 1

x x1 1 1 1exp exp
2 22 2

jk

k j jk

i i

i ik jσ σπ σ π σ= =

⎛ ⎞ ⎛ ⎞− −
⎜ − ⎟ > ⎜ − ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
x x

,∀ k≠j (2.68)

This method requires a reasonably large training data set and is computationally

inexpensive during training but is computationally expensive for testing. During testing

the kernel function must be computed for each of the training samples making a

comparison between the new sample x0 and all of the existing training samples x. Several

kernel approaches have been proposed in literature (Fukunaga, 1990; Wand and Jones,

1995). The kernels were originally presented by Parzen (1962).

62

Figure 2.11. Parzen Density Estimator with RBF window with Decision Boundary.

2.6.5 Probabilistic Neural Networks (PNN)

The classification frame work of the probabilistic neural network is shown in Figure 2.12

(Specht, 1998; 1990). There are a few decisions that have to be made regarding training

of the neural network. First, the number of training samples and number of classes are

selected for the pattern layer; this defines the structure of the network. For example, the

set of input training samples is represented as x = [x1,x2,…,x]T ∈ n and a class label yi

∈ C = [C1,C2,…,Cc], i = 1,2,…, . This will result in c groups with each group in the

pattern layer containing neurons. Second, for the summation layer the smoothing

parameter, σ, in the nonlinear operation f(zi) of the neural network must be determined.

As a general guideline the value of the smoothing parameter, σ, should chosen as a

function of the dimension of the problem, n, and the number of training samples,

(Specht, 1990). The structure of the probabilistic neural network classifier has three

layers as shown in Figure 2.12, pattern layer, summation layer and the decision layer. The

pattern layer forms a dot product of the input features, x, with the weight vectors, wi,

63

resulting in zi = x•wi. A nonlinear operation f(zi) on zi is preformed prior to outputting the

activation to the summation level.

() 2

1exp i
if

σ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠

zz (2.69)

The summation layer sums the inputs from the pattern layer that corresponds to the class

from which the training patterns were selected. The output layer returns the summation

values for each of the c classes, a two-class example is shown in Figure 2.13. Each output

values P1,…,Pc is the posterior probability that the sample belongs to that particular class,

where
1

1
c

j
j

P
=

=∑ .

Figure 2.12. Probabilistic Neural Network Classification Structure.

x1

x2

∑

∑

xn

∑

Class 1 Group

Class 2 Group
P1
P2

Pc

Class c Group

Input Features
x0 = x1,x2,…,xn ∈ n

Pattern Layer Summation Layer Output Layer

64

Figure 2.13. PNN with Decision Boundary.

2.6.6 Support Vector Machine (SVM)

SVM performs pattern recognition for two-class problems by determining the separating

hyperplane that maximizes the distance between the closest points of each class in the

training set (Scholkopf et al., 1998; 1999; 2002; Burgers, 1998; Vapnik, 1998; Platt,

2000; Hsu et al., 2006). These closest points are called support vectors. In finding the

hyperplane, the SVM performs a nonlinear separation in the input space by using a

nonlinear transformation φ(xi) that maps the data points xi of the input space, n, into a

potential higher dimensional space, called kernel space (> n). The mapping φ(xi) is

represented in the SVM classifier by a kernel function K(xi, xj) that defines an inner

product in .

The optimal hyperplane is the one with the maximal distance (in space p) to the closest

points φ(xi) of the training data, an example is shown in Figure 2.14. Determining the

hyperplane requires maximizing the following function with respect to α

65

() ()
1 1 1

1 ,
2i i j i j i j

i i j

W y y Kα α α
= = =

= −∑ ∑∑ x xα (2.70)

under the constraints ,j jj
yα∑ i = 1,…, . The non-negative Lagrangian multipliers are

()1,..., skα α α= with an upper bound Ĉ, ˆ 0α≥ ≥
s

C . The Lagrangian multipliers are

also known as the alpha vectors.

With the given support vectors xk and class labels yk, the decision function of the SVM

classifier can be written as sign(f(x)) where f(x) is defined by:

() () ()
1

,
s

k k k
k

f b y K bφ α
=

= + = +∑x w x x x (2.71)

This is equivalent to the maximal margin hyperplane in the input space defined by the

kernel (Cristianini and Shawe-Taylor, 2000). The goal of the SVM is to solve for α, the

bias b and the support vectors xk. To compute the bias b, Equation (2.71) is rewritten as

follows:

()
1

,
s

k k k i i
k

y K b yα
=

+ =∑ x x (2.72)

Therefore, the bias is calculated by obtaining the average as (Scholkopf and Smola,

2002):

()
1 1

1 ,
s

i k k k i
i k

b y y Kα
= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ x x (2.73)

66

In order to reduce the number of false positives and false negatives the optimal bias in

(2.73) can be adjusted accordingly. In this case the bias is a threshold (Scholkopf and

Smola, 2002).

Figure 2.14. SVM with Optimal Hyperplane.

Solving Equation (2.70) is a dual quadratic programming (QP) problem. There are

several methods used to solve the quadratic programming problem, including Kernel-

Adatron (Friess et al., 1998; Cristianini and Shawe-Taylor, 2004), LOQO (Vanderbei and

Shanno, 1999) and sequential minimal optimization (SMO) (Cristianini and Shawe-

Taylor, 2000; Franc and Hlavac, 2007; Mak, 2000; Platt, 2000).

Several solutions are available as complete SVM systems to include LIBSVM (Chang

and Lin, 2001), Matlab Optimization Toolbox (2007) and SVMlight (Joachims, 1998,

2007). Each of these methods has individual advantages and disadvantages that are

beyond the scope of this research.

67

2.7 Multi-Class Classification

In the previous section two-class classifiers were described. However, in many real world

problems there are cases where more than two classes exist. The classification methods

EM, k-NN, KFD, Parzen window, probabilistic neural network and SVM can all be

modified for a multi-class solution. EM can be used to determine the mean and

covariance for each of the classes individually and classified using the Bayes classifier.

This however, has the disadvantage of producing inaccurate results when the class

distributions are not normally distributed or linearly separable. k-NN can also be trained

to solve a multi-class problem. Selecting k-nearest neighbors of the input vector x a count

of the training samples from each of the classes can be used to determine the class label

of x. The multi-class case performs better with a larger number of input training vectors x

but has the disadvantage of determining the number of nearest neighbors. Unlike the two-

class case where better performance is achieved for large k, for the multi-class

classification this is not always true. The KFD is a two-class classifier by design. It could

be converted into a multi-class system in a similar manner as the BSVM (Hsu et al.,

2002). In this research only the two-class KFD will be used. For the Parzen window

density estimator a multi-class solution can be achieved. As with the two-class case, this

method is easily trained but computationally expensive. The expense is in terms of its

processing time and memory allocation when the number of samples is large. For a multi-

class solution the larger the number of training samples per class the better the

performance is achieved. In the multi-class case of the SVM two methods are used in

which the margins of separation are determined in the kernel space, BSVM (Hsu and Lin,

2002) and BSVM 2.0 (Hsu et al., 2002). BSVM 2.0 solves the multi-class classification

problem for the solution of large classification and regression problems. It includes three

methods

 Multi-class classification by solving a single optimization problem using a bound-

constrained formulation.

68

 Multi-class classification using Crammer and Singer's formulation (Crammer and

Singer, 2000; Crammer and Singer, 2001).

 Regression using a bound-constrained formulation

While each of these methods can be used for multi-class classification they each have

disadvantages when compared to their two-class counterparts. In this research the two-

class SVM is used since experimentation has shown that the BSVM 2.0 begins to provide

a reduction in classification accuracy when more than 5 classes are used for the clean and

stego image data sets.

In several multi-class classification methods two-class classifiers are combined using

one-against-one and one-against-all (Fukunaga, 1990; Duda et al., 2001; Tax and Duin,

2002; Lin et al., 2003; Bishop, 2006; Theodoridis and Koutroumbas, 2006). Learning

architectures are used to combine several two-class classifiers in order to create a multi-

class classifier. In these methods training is done by comparing one class against each of

the other classes or by training one class against the remaining classes. This produces

several classifiers in which a winner take all approach is used. The winner take all assigns

the class label based on a majority vote wins. In this section the following multi-class

approaches are presented: one-against-one and one-against-all methods.

2.7.1 One-Against-One

In one-against-one each class is trained against each of the others. The goal is to train the

multi-class rule based on the majority vote strategy. The majority votes based multi-class

classifier assigns the test input vector x0 into class C = [C1,C2,…] having the majority of

the votes. This is a fairly reliable method assuming that the feature space is separable

from one class to the other. Problems arise when a large number of classes are being

trained; the resulting system becomes computationally expensive as the number of

classifiers increases factorially. The one-against-one approach constructs k(k-1)/2

69

classifiers from two different classes for each one of the training data sets. This is for

training data from the ith and the jth classes which has k classes. As an example consider a

case with 10 classes, k = 10. This will require 45 classifiers to be trained. In most

classification systems a voting strategy is used. In binary classification the voting strategy

votes are cast for all data points x where the majority number of votes for a class wins,

“Max Wins”. This may lead to a situation where two classes have the same number of

votes. One approach to resolving this conflict is to select the class with the smallest index

(Hsu et al., 2002).

2.7.2 One-Against-All

Several articles have been written on one-against-all training methods (Liu and Zheng,

2005). The one-against-all method trains the multi-class problem as a series of Ci two-

class subtasks that can be trained by any two-class classifier. If there is k > 2-class

exemplars, k 2-class classifiers will be constructed which separate one class from all

other classes. To get k-classifiers it is common to construct a set of binary classifiers each

trained to separate an individual class from the remaining classifiers. One disadvantage of

this method is with a significant number of classifiers a large number of two-class

classifiers will need to be compared. When grouping all of the classes together the

classification may become more difficult as separating the one from all of the rest may

not lead to a separation between the classes, and lead to poor classification performance.

2.8 Classifier Fusion

To improve the classification accuracy for the multi-class classification, combining

classifiers, classifier fusion, may prove useful on the overall performance of the

classification system. The main focus of recent research in classifier fusion has been on

establishing the relationship between the diversity of the classifiers and their resulting

accuracy/performance. The paradigms of the different models differ on the assumptions

70

about classifier dependencies, type of classifier outputs, aggregation strategy either global

or local, aggregation procedure such as a function, a neural network or an algorithm, etc.

(Kittler et al., 1998; Duin and Tax, 2000; Ruta and Gabrys, 2000; Duin, 2002, Kittler,

2002). Three methods of combining classifiers are described which included boosting,

Bayes networks and probabilistic neural network combiners.

2.8.1 Boosting

Boosting is a powerful technique for combining an ensemble of base classifiers to

produce a form of committee whose performance can be significantly increased over any

of the single classifiers. The most widely used form of boosting is AdaBoost, developed

by Freund and Schapire (1995). Boosting provides good results even if the base

classifiers, are weak learners, and have a performance that is only slightly better than

random (Freund and Schapire, 1999).

The primary difference between boosting and bagging is that the base classifiers are

trained in sequence, and each base classifier is trained using a weighted form of the data

set in which the weighting coefficient associated with each data point depends on the

performance of the previous classifiers. In particular, points that are misclassified by one

of the base classifiers are given greater weight when used to train the next classifier in the

next sequence. Once all the classifiers have been trained, their predictions are then

combined through a weighted majority voting scheme. AdaBoost calls a given weak or

base learning algorithm repeatedly in a series of rounds, yi = 1,…, . The precise form of

the AdaBoost algorithm is given below:

AdaBoost Algorithm (Bishop, 2006, pp. 658)

 1. The data weighting coefficients {wi} are initialized as ()1 1=iw for i = 1,…, .

 2. For k = 1,…,K:

71

 (a) Fit a classifier Mk(x) to the training data by minimizing the weighted

 error function

() ()()
1=

= ≠∑ xk
k i k i i

i
J w I M y (2.71)

 where ()()≠xk i iI M y is the indicator function and equals 1 when Mk(xi)

 ≠ yi and 0 otherwise.

 (b) Evaluate the quantities

() ()()
()

1

1

ε =

=

≠
=

∑

∑

xk
i k i i

i
k

k
i

i

w I M y

w
 (2.72)

 and then use these to evaluate

1ln εα
ε

⎧ ⎫−
= ⎨ ⎬

⎩ ⎭
k

k
k

 (2.73)

 (c) Update the data weighting coefficients

() () ()()1 α ≠+ = xk k i iI M yk k
i iw w e (2.74)

 3. Making a prediction using the final trained model for an input image sample x0

 is given by

() ()0 0
1
α

=

= ∑x x
K

k k
k

f M (2.75)

The first base classifier M1(x) is trained using weighting coefficients ()1
iw that are all

equal, which corresponds to the usual procedure for training a single classifier. In Step

2(c), subsequent iterations in the weighting coefficients ()k
iw are increased for data points

that are misclassified and decreased for data points that are correctly classified.

Successive classifiers are forced to place greater emphasis on points that have been

misclassified by previous classifiers, and data points that continue to be misclassified by

successive classifiers receive even greater weight. The quantities εk represents the

72

weighted measures of the error weights of each of the base classifiers on the data set.

Therefore, in Step 2(b) the weighing coefficients αk give greater weights to the more

accurate classifiers when computing the overall output given by Step 3 (Bishop, 2006, pp.

658).

2.8.2 Bayes Network for Model Averaging

Bayes model averaging merges together several multi-class classifiers by combining the

probabilistic density estimation of each classifier’s classification accuracy as a mixture of

Gaussians (Hoeting et al., 1999; Murphy, 2001). Murphy’s (2001) Bayes Net Toolbox

(BNT) for Matlab was used in the analysis to facilitate the computations in the model

averaging. The probabilistic density estimation specifies the local conditional probability

distributions (CPD) for a classification model, Mk, where k is one of the K classifiers, and

M is the set of all classifiers. The CPD of each model Mk is p(Mk|T). This represents for

each class, the probability of what a classification model will classify a target instance T

as. In this research the implementation uses confusion matrices which represent the

correct and incorrect classification for each multi-class classifier providing the

probabilistic density estimation for each classifier.

The fusion process uses the classifications from the classification models (M), in

conjunction with Bayes Rule, to compute the posterior probability for each target

classification T = c:

() () ()
1

| |M η
=

= = = =∏
K

k
k

p T c p M T c p T c (2.76)

where η is a normalizing constant.

73

The final classification is then the target classification, T = c, with the highest probability.

The prior probability of p(T) is calculated from the number of targets.

2.8.3 Probabilistic Neural Network (PNN) Fusion

The fusion method in this work is an extension from the two-class fusion investigated by

Leap et al., (2007) to a multi-class system fusion. In this method the outputs of individual

classification systems are treated as input features to train a probabilistic neural network

(Specht, 1990) for fusion. The key is to use the class labels from each of the systems as

posterior probability estimates and employing them as features in the neural network. It

should be noted that one of the posterior probabilities from the input classifier should be

removed. For example, if K three-class classifiers are used, then each of the classification

models, Mk, will contribute two inputs for training the PNN. The fusion method treats the

posterior probabilities from individual detection systems as features to the neural network

and outputs an overall posterior probability of a sample as being in a given class. This

fusion does not impose any independence assumptions on the input systems.

2.9 Summary

This chapter presented the key elements necessary to solve the steganalysis multi-class

classification system for identifying JPEG steganography embedding methods. JPEG

image representation was described by introducing the discrete cosine transform and the

JPEG image format and it compression steps. The feature generation methods described

in this chapter were a wavelet based method and a discrete cosine transform method. In

feature preprocessing outlier removal, data normalization and data standardization were

presented. For feature extraction, PCA and Kernel PCA were described. The feature

ranking/selection method presented in this chapter were the Bhattacharyya distance,

Fisher’s linear discriminant ratio, signal to noise ratio, kernel Fisher’s discriminant

recursive feature elimination and the zero-norm feature ranking. In classification both

74

two-class and multi-class classification method used in this research were described; the

six methods used are EM, k-NN, KFD, Parzen window, probabilistic neural networks and

SVM. A section was devoted to improving classification performance with classifier

fusion covering boosting, Bayes networks and probabilistic neural networks.

In this chapter several methods have been described that are essential in making a

comparison with the proposed overall detection method described in Chapter 3. Some of

the methods described in this chapter are modified to accommodate the needs of the

proposed method. In other cases, the methods in this chapter are incorporated into the

system.

75

III. Methodology

This chapter presents a multi-class fusion system for classification of steganographic

methods. This detection method classifies JPEG images based on generated image

features whereby previously unseen images are associated with exactly one element of

the label set, i.e., clean or type of stego image. The stego image consists of one of seven

targeted embedding methods, F5 (Westfeld, 2001; 2003), JP Hide (Latham, 1999), JSteg

(Upham, 1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2 (Sallee,

2008a), OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) and UTSA

(Agaian et al., 2006).

Figure 3.1 shows the classification system developed in this research. The image set

consists of clean and stego images that have data embedded using one of nine methods.

Features are generated from each image and each feature set is assigned a class label

identifying the embedding method used. The features are used in three components of the

multi-class system. See Figure 3.1. The first component is Multi-class Detection for

EM/k-NN/Parzen/PNN. The existing feature improvement methods and classifiers are

used to create four multi-class detection systems that each return a class label assigned to

the input sample (Rodriguez and Peterson, 2008a). The second component is Multi-class

Detection for KFD/SVM. It contains a new feature ranking method along with a new

multi-class tree to generate a multi-class classification label with the combination of two-

class classifiers. The third component, Commercial Detection Systems, has two

commercial steganalysis tools that return class labels for a variety of stego methods. The

assigned class labels for 8 multi-class systems are fused shown as Classifier Fusion in the

figure and a final class label is assigned.

76

Figure 3.1. Detection System.

This chapter presents four improvements to steganalysis pattern recognition. The first is

the creation of new features generated from the frequency bands and directions of the

Discrete Cosine Transform (DCT) coefficients of JPEG images. The second

improvement is a new feature ranking method. From the original input feature set, it

selects a subset of features specifically designed for the kernel Fisher’s discriminant

Input Image Data Set

Clean/Stego

Feature Generation

Feature
Ranking

Classifier Fusion

Feature Improvement
Pre-processing/Extraction/Ranking

Multi-class
Tree

Feature
Standardization

Classification

Classification

Class Labels
EM/k-NN/Parzen/PNN

Class Labels
KFD/SVM

St
eg

o
Su

ite

Multi-class
Detection
for EM/k-NN/
Parzen/PNN

Multi-class
Detection

for KFD/SVM

Class Labels
SASS/SSM

Commercial
Detection

System

Label Assignment
Clean, F5, JP Hide, JSteg, Model-based, Model-based 1.2, OutGuess, Steganos,

StegHide, UTSA

77

(KFD) and the support vector machines (SVM). The third improvement is a multi-class

classification tree designed for the KFD and SVM classifiers. The final contribution of

this steganalysis classification system is the fusion of multi-class classifiers. These

improvements are designed to increase the identification of embedding methods used to

create stego images.

3.1 Feature Generation

This section details the novel DCT feature generation method. Figure 3.2 illustrates the

main components of the novel feature generation method.

Figure 3.2. General Feature Generation System.

The first component builds on details of the DCT coefficient representation which is used

in a decomposition. Two metrics are calculated on each 8×8 block of the decomposed

coefficients in a JPEG image. The first metric is a difference calculation that compares

DCT coefficients with neighboring coefficients. The second metric is a least square linear

regression metric that uses DCT coefficients, shifted coefficients and neighboring

coefficients to calculate weights used in the regression model. Statistics (e.g., mean,

variance, etc.) are calculated over the DCT coefficients, neighboring coefficients, shifted

coefficients and the metrics. The last three set of statistics are then subtracted from the

statistics of the DCT coefficients creating a set of 180 features used to identify clean and

stego images.

DCT
Coefficient

Decomposition

JPEG
DCT

Coefficient
Representation

Features

Statistics
Calculation

Input Image

Metrics
Calculation

78

3.1.1 DCT Representation

The standard DCT used in JPEG compression has two properties, i.e., the directional and

frequency distributions of 8×8 blocks within an image (Rao and Yip, 1990). In JPEG

compression on a two dimensional (2-D) signal, the zig-zag scan shown in Figure 3.3a is

used to take advantage of the frequency distributions of the DCT shown in Figure 3.3b

(Brown and Shepherd, 1995, pp. 224). The DCT decomposition divides the coefficients

into low, medium and high frequencies. Figure 3.3c shows the breakdown of the vertical,

diagonal and horizontal directions of the coefficients. In this research both the

frequencies and directions of the DCT are investigated to generate features. Figure 3.3d

shows an 8×8 image with a horizontal edge between black and white pixels. The

corresponding 2-D DCT of Figure 3.3d is shown in Figure 3.3g which has coefficients

that are prominent along the first column. In Figure 3.3e an image is shown with a

diagonal edge between black and white pixels with a corresponding 2-D DCT shown in

Figure 3.3h which has coefficients located along the diagonal. In Figure 3.3f an image is

shown with a vertical edge between black and white pixels with a corresponding 2-D

DCT shown in Figure 3.3i which has coefficients located along the first row.

79

a) b) c)

d) e) f)

g) h) i)

Figure 3.3. DCT decomposition a) zig-zag scan pattern b) low, medium and high

frequency distributions c) vertical, diagonal and horizontal directions d) 8×8 image with a

horizontal edge between pixels e) 8×8 image with a diagonal edge between pixels f) 8× 8

image with a vertical edge between pixels g) 2-D DCT representation of horizontal image

h) 2-D DCT representation of diagonal image i) 2-D DCT representation of vertical

image.

High
Frequencies

Medium
Frequencies Diagonal

Directions

Vertical
Directions

Low
Frequencies
DC

Horizontal
Directions

DC

80

3.1.2 Arrangement of Decomposed DCT Coefficients

The calculation of the features requires rearranging the DCT coefficients in three

different ways. The first, DCT decomposition separates coefficients into areas within the

8×8 DCT block, three frequency bands as well as three directions. This results into 9

areas that the coefficients are decomposed into where 6 different areas are used. The

second is a set of coefficients generated by shifting the 8×8 pixel blocks in the spatial

domain and recalculating the quantized DCT coefficients. The DCT decomposition

feature method is then used over these shifted blocks. Three different shifting operations

are used, shifting the 8×8 block to the right by four pixels (block shift right), down by

four pixels (block shift down), and diagonal by four pixels (block shift diagonal). The last

arrangement of the DCT coefficients are sets of neighboring coefficients within an 8×8

DCT block for a DCT coefficient of interest.

3.1.2.1 Frequency and Directional Coefficient Vectors

The 8×8 coefficient values are represented as (),bd u v where u = v = 1,…,8, b = 1,…,B,

where B is the number of 8×8 blocks within a color layer of an image. The zig-zag

pattern shown in Figure 3.3a is used to translate the 8×8 matrix into a vector. The vector

is represented as ˆ
ˆb

k
d , k̂ = 1,…,64, and the locations of k̂ are shown in Figure 3.4.

81

1 2 6 7 15 16 28 29 1 2 6 7 15 16 28 29

3 5 8 14 17 27 30 43 3 5 8 14 17 27 30 43

4 9 13 18 26 31 42 44 4 9 13 18 26 31 42 44

10 12 19 25 32 41 45 54 10 12 19 25 32 41 45 54

11 20 24 33 40 46 53 55 11 20 24 33 40 46 53 55

21 23 34 39 47 52 56 61 21 23 34 39 47 52 56 61

22 35 38 48 51 57 60 62 22 35 38 48 51 57 60 62

36 37 49 50 58 59 63 64 36 37 49 50 58 59 63 64

a) b)
1 2 6 7 15 16 28 29 1 2 6 7 15 16 28 29

3 5 8 14 17 27 30 43 3 5 8 14 17 27 30 43

4 9 13 18 26 31 42 44 4 9 13 18 26 31 42 44

10 12 19 25 32 41 45 54 10 12 19 25 32 41 45 54

11 20 24 33 40 46 53 55 11 20 24 33 40 46 53 55

21 23 34 39 47 52 56 61 21 23 34 39 47 52 56 61

22 35 38 48 51 57 60 62 22 35 38 48 51 57 60 62

36 37 49 50 58 59 63 64 36 37 49 50 58 59 63 64

c) d)
Figure 3.4. DCT Coefficient Locations and Separations a) DCT Coefficient Location

after Zig-Zag Scan b) Coefficient Locations of Vertical, Diagonal and Horizontal

directions c) Coefficient Locations of Low, Mid and High Frequencies d) 8×8 block

Coefficient Separation of both frequencies and directions.

82

The coefficient vector indices from the zig-zag method are shown in Figure 3.4a. The DC

coefficient is at location 1 and locations 2 through 64 are the AC coefficients. Figure 3.4b

shows the separations of vertical (red), diagonal (green) and horizontal (blue) DCT

decompositions. The remaining coefficients correspond to the high frequencies and are

normally zero due to the quantization compression of the JPEG method. For a typical

compression of JPEG images the high frequencies correspond to the black cells in Figure

3.4c. The DCT decompositions of low (white), medium (gray) and high (black)

frequencies coefficients are shown in Figure 3.4c. In this research the coefficients will be

decomposed as shown in Figure 3.4d. As shown in Figure 3.4d the 8×8 block is divided

into eight DCT decompositions represented by both the frequency distributions and

directions.

The coefficients are arranged as follows:

• The combination of vertical and low frequencies (VL) is shown as red in Figure

3.4d. The vector ˆb
VLd contains the DCT coefficients of block b after the zig-zag

scan at locations 2, 6, 7 and 8 such that the vector ()ˆ | 1, ,b
VL VLD d b B= = … .

• The diagonal and low frequencies (DL) are shown as green in Figure 3.4d. The

vector ˆb
DLd contains the DCT coefficients of block b at locations 5 and 13 such

that ()ˆ | 1, ,b
DL DLD d b B= = … .

• The horizontal and low frequencies (HL) are shown as blue in Figure 3.4 d. The

vector ˆb
HLd contains the DCT coefficients of block b at locations 3, 4, 9 and 10

such that ()ˆ | 1, ,b
HL HLD d b B= = … .

• The vertical and mid frequencies (VM) are shown as dark red in Figure 3.4d. The

vector ˆb
VMd contains the DCT coefficients of block b after the zig-zag scan at

locations 14, 15, 16, 17, 27, 28, 30, and 31 such that ()ˆ | 1, ,b
VM VMD d b B= = … .

83

• The diagonal and mid frequencies (DM) are shown as dark green in Figure 3.4d.

The vector ˆb
DMd contains the DCT coefficients of block b after the zig-zag scan at

locations 18, 19, 24, 25, 26, 32, 33, 39, 40 and 41 such that

()ˆ | 1, ,b
DM DMD d b B= = … .

• The horizontal and mid frequencies (HM) are shown as dark blue in Figure 3.4d.

The vector ˆb
HMd contains the DCT coefficients of block b after the zig-zag scan at

locations 11, 12, 20, 21, 22, 23, 34 and 35 such that ()ˆ | 1, ,b
HM HMD d b B= = … .

The remaining coefficients of Figure 3.4d shown in black are not analyzed with the

decomposition since during JPEG compression they are often zero valued and typically

not used to hide a stego message (Fridrich, 2004).

3.1.2.2 Block Shifted Coefficient Vectors

In this subsection the individual 8×8 blocks of an input JPEG image are shifted in the

spatial domain and recompressed using the JPEG compression technique. Three shifting

techniques are used, shifting to the right, down and right and down each by four pixels.

The coefficients from the shifted blocks are placed in vectors as in subsection 3.1.2.1.

The first set of shifted coefficients focuses on shifting the pixel values to the right by four

pixels in the spatial domain as shown in Figure 3.5.

84

Figure 3.5. Original block and right shifted pixel locations

The original block containing the spatial domain pixels is transformed using the JPEG

compression properties, e.g., the same quantization table used in compression. The last

column of blocks has no neighboring blocks so the final four columns of pixels in the

image are duplicated to ensure B shifted blocks exist.

Using the same vector representation of the DCT coefficients as in subsection 3.1.2.1 for

the right shifted blocks results in the following vector representations:

• The combination of vertical and low frequencies (VL) results in a vector ,ˆb
VL Rights

containing the DCT coefficients of block b after the zig-zag scan at locations 2, 6,

7 and 8 such that the vector (), ,ˆ | 1, ,b
VL Right VL RightS s b B= = … .

• The diagonal and low frequencies (DL) result in a vector ,ˆb
DL Rights containing the

DCT coefficients of block b at locations 5 and 13 such that

(), ,ˆ | 1, ,b
DL Right DL RightS s b B= = … .

85

• The horizontal and low frequencies (HL) result in a vector ,ˆb
HL Rights containing the

DCT coefficients of block b at locations 3, 4, 9 and 10 such that

(), ,ˆ | 1, ,b
HL Right HL RightS s b B= = … .

• The vertical and mid frequencies (VM) result in a vector ,ˆb
VM Rights containing the

DCT coefficients of block b after the zig-zag scan at locations 14, 15, 16, 17, 27,

28, 30, and 31 such that (), ,ˆ | 1, ,b
VM Right VM RightS s b B= = … .

• The diagonal and mid frequencies (DM) result in a vector ,ˆb
DM Rights containing the

DCT coefficients of block b after the zig-zag scan at locations 18, 19, 24, 25, 26,

32, 33, 39, 40 and 41 such that (), ,ˆ | 1, ,b
DM Right DM RightS s b B= = … .

• The horizontal and mid frequencies (HM) result in a vector ,ˆb
HM Rights containing

the DCT coefficients of block b after the zig-zag scan at locations 11, 12, 20, 21,

22, 23, 34 and 35 such that (), ,ˆ | 1, ,b
HM Right HM RightS s b B= = … .

The second set of shifted coefficients focuses on shifting the pixel values down by four

pixels in the spatial domain as shown in Figure 3.6.

86

Figure 3.6. Original block and down shifted pixel locations

For this method the last row of blocks has no neighboring blocks so the final four rows of

pixels in the image are duplicated to ensure B shifted blocks exist.

The down shifted blocks results in the following vector representations:

• The combination of vertical and low frequencies (VL) results in a vector ,ˆb
VL Downs

containing the DCT coefficients of block b after the zig-zag scan at locations 2, 6,

7 and 8 such that the vector (), ,ˆ | 1, ,b
VL Down VL DownS s b B= = … .

• The diagonal and low frequencies (DL) result in a vector ,ˆb
DL Downs containing the

DCT coefficients of block b at locations 5 and 13 such that

(), ,ˆ | 1, ,b
DL Down DL DownS s b B= = … .

87

• The horizontal and low frequencies (HL) result in a vector ,ˆb
HL Downs containing the

DCT coefficients of block b at locations 3, 4, 9 and 10 such that

(), ,ˆ | 1, ,b
HL Down HL DownS s b B= = … .

• The vertical and mid frequencies (VM) result in a vector ,ˆb
VM Downs containing the

DCT coefficients of block b after the zig-zag scan at locations 14, 15, 16, 17, 27,

28, 30, and 31 such that (), ,ˆ | 1, ,b
VM Down VM DownS s b B= = … .

• The diagonal and mid frequencies (DM) result in a vector ,ˆb
DM Downs containing the

DCT coefficients of block b after the zig-zag scan at locations 18, 19, 24, 25, 26,

32, 33, 39, 40 and 41 such that (), ,ˆ | 1, ,b
DM Down DM DownS s b B= = … .

• The horizontal and mid frequencies (HM) result in a vector ,ˆb
HM Downs containing

the DCT coefficients of block b after the zig-zag scan at locations 11, 12, 20, 21,

22, 23, 34 and 35 such that (), ,ˆ | 1, ,b
HM Down HM DownS s b B= = … .

The third set of shifted coefficients focuses on shifting the pixel values to the right by

four pixels and down by four pixels in the spatial domain as shown in Figure 3.7.

88

Figure 3.7. Original block and diagonal shifted pixel locations.

Shifting the blocks diagonally, the last row and column of blocks have no neighboring

blocks so the final four rows and the final four columns of pixels in the image are

duplicated to ensure B diagonally shifted blocks exist.

The diagonally shifted blocks results in the following vector representations:

• The combination of vertical and low frequencies (VL) results in a vector ,ˆb
VL Diags

containing the DCT coefficients of block b after the zig-zag scan at locations 2, 6,

7 and 8 such that the vector (), ,ˆ | 1, ,b
VL Diag VL DiagS s b B= = … .

• The diagonal and low frequencies (DL) result in a vector ,ˆb
DL Diags containing the

DCT coefficients of block b at locations 5 and 13 such that

(), ,ˆ | 1, ,b
DL Diag DL DiagS s b B= = … .

89

• The horizontal and low frequencies (HL) result in a vector ,ˆb
HL Diags containing the

DCT coefficients of block b at locations 3, 4, 9 and 10 such that

(), ,ˆ | 1, ,b
HL Diag HL DiagS s b B= = … .

• The vertical and mid frequencies (VM) result in a vector ,ˆb
VM Diags containing the

DCT coefficients of block b after the zig-zag scan at locations 14, 15, 16, 17, 27,

28, 30, and 31 such that (), ,ˆ | 1, ,b
VM Diag VM DiagS s b B= = … .

• The diagonal and mid frequencies (DM) result in a vector ,ˆb
DM Diags containing the

DCT coefficients of block b after the zig-zag scan at locations 18, 19, 24, 25, 26,

32, 33, 39, 40 and 41 such that (), ,ˆ | 1, ,b
DM Diag DM DiagS s b B= = … .

• The horizontal and mid frequencies (HM) result in a vector ,ˆb
HM Diags containing the

DCT coefficients of block b after the zig-zag scan at locations 11, 12, 20, 21, 22,

23, 34 and 35 such that (), ,ˆ | 1, ,b
HM Diag HM DiagS s b B= = … .

3.1.2.3 Neighboring Coefficient Matrices

Each DCT coefficient has a corresponding vector of neighboring coefficients. For a

coefficient of interest in an 8×8 block, the neighboring coefficients are defined as its

surrounding coefficients. The six vectors representing the directional and frequency

coefficients described in subsection 3.1.2.1 each have a matrix of neighboring

coefficients.

The vectors and matrices of neighboring coefficients are as follows:

• For the vertical directions and low frequencies vector ˆb
VLd when VL = 2 the

coefficient at location 2
ˆbd has corresponding neighboring coefficients 1, 6, 7, 8 and

90

14 represented by the vector 2,ˆ
VL

b
kn = [1 6 7 8 14], kVL = 1,…,5. The matrix of

neighboring coefficients for ˆb
VLd is as follows:

()
2,

6,
, ,

7,

8,

1 6 7 8 14
2 7 14 15 17

such that | 1, ,
6 15 16 17 27
5 14 17 18 26

VL

VL

VL VL

VL

VL

b
k

b
kb b

VL k VL VL kb
k

b
k

n

n
n N n b B

n

n

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

…

• The matrix of neighboring coefficients for the horizontal directions and low

frequencies vector ˆb
DLd are represented as follows:

()5,
, ,

13,

1 8 9 13 25
such that | 1, ,

5 18 19 25 40
DL

DL DL

DL

b
kb b

DL k DL DL kb
k

n
n N n b B

n

⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦
…

• The matrix of neighboring coefficients for the horizontal directions and low

frequencies vector ˆb
HLd are represented as follows:

()
3,

4,
, ,

9,

10,

1 4 9 10 12
3 10 11 12 20

such that | 1, ,
5 12 19 20 24
4 11 20 21 23

HL

HL

HL HL

HL

HL

b
k

b
kb b

HL k HL HL kb
k

b
k

n

n
n N n b B

n

n

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

…

• The matrix of neighboring coefficients for the vertical directions and the medium

frequencies vector ˆb
VMd are represented as follows:

14,

15,

16,
,

17,

27,

31,

,

5 8 17 18 26 27 31
6 7 16 17 27 28 30
7 15 27 28 29 30 43
8 14 26 27 30 31 42

14 17 30 31 42 43 44
18 26 41 42 44 45 54

such that |

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

=

VM

VM

VM

VM

VM

VM

VM

VM

b
k

b
k

b
kb

VM k b
k

b
k

b
k

b
VM VM k

n

n

n
n

n

n

n

N n()1, ,= …b B

91

• The matrix of neighboring coefficients for the horizontal directions and medium

frequencies vector ˆb
DMd are represented as follows:

18,

19,

24,

25,

26,
,

32,

33,

39,

40,

41,

2 8 25 26 32 40 41 46
3 9 24 25 33 39 40 47
4 12 33 34 39 47 48 51
5 13 32 33 40 46 47 52
6 14 31 32 41 45 46 53
8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

DM

DM

DM

DM

DM

DM

DM

DM

DM

DM

DM

b
k

b
k

b
k

b
k

b
kb

DM k b
k

b
k

b
k

b
k

b
k

n

n

n

n

n
n

n

n

n

n

n

(),

18 41 40 46 52 53 56
9 19 39 40 47 51 52 57

12 24 47 48 51 57 58 59
13 25 46 47 52 56 57 60
14 26 45 46 53 55 56 61

such that | 1, ,

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= = …
DM

b
DM DM kN n b B

• The matrix of neighboring coefficients for the horizontal directions and medium

frequencies vector ˆb
HMd are represented as follows:

11,

12,

20,
,

21,

23,

34,

,

4 10 20 21 23 22 35
5 9 19 20 23 24 34
9 12 23 24 34 35 38

10 11 22 23 35 36 37
12 20 34 35 37 38 49
19 24 38 39 48 49 50

such that

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

=

HM

HM

HM

HM

HM

HM

HM

HM

b
k

b
k

b
kb

HM k b
k

b
k

b
k

HM HM k

n

n

n
n

n

n

n

N n()| 1, ,= …b b B

The arrangement of the coefficients into the vectors D, SRight, SDown, SDiag along with the

matrices N will be used to calculate the metrics in the next sect and used to calculate

statistics necessary for generating the features.

92

3.1.3 Metrics Calculation

In this subsection two metrics used to compare coefficients are described. The first is a

difference calculation that compares DCT coefficients with neighboring coefficients. The

second metric is a least square linear regression metric that uses DCT coefficients, shifted

coefficients and neighboring coefficients to calculate weights used in the regression

model.

3.1.3.1 Mean Difference between DCT Coefficients and Neighboring Coefficients

The mean difference metric between the DCT coefficients in subsection 3.1.2.1 and the

neighboring coefficients from subsection 3.1.2.3 are described in this subsection. Vectors

are generated for the three directions and the frequencies.

The mean differences are calculated as follows:

• Vertical direction and low frequencies

() ()
5

,
1

1 ˆ such that | 1, ,
5 VL

VL

b b b b
VL VL VL k VL VL

k

d d n D d b B
=

= − = =∑ … (3.1)

• Diagonal direction and low frequencies

() ()
5

,
1

1 ˆ such that | 1, ,
5 DL

DL

b b b b
DL DL DL k DL DL

k

d d n D d b B
=

= − = =∑ … (3.2)

• Horizontal direction and low frequencies

() ()
5

,
1

1 ˆ such that | 1, ,
5 HL

HL

b b b b
HL HL HL k HL HL

k

d d n D d b B
=

= − = =∑ … (3.3)

• Vertical direction and medium frequencies

() ()
7

,
1

1 ˆ such that | 1, ,
7 VM

VM

b b b b
VM VM VM k VM VM

k

d d n D d b B
=

= − = =∑ … (3.4)

• Diagonal direction and medium frequencies

93

() ()
8

,
1

1 ˆ such that | 1, ,
8 DM

DM

b b b b
DM DM DM k DM DM

k

d d n D d b B
=

= − = =∑ … (3.5)

• Horizontal direction and medium frequencies

() ()
7

,
1

1 ˆ such that | 1, ,
7 HM

HM

b b b b
HM HM HM k HM HM

k

d d n D d b B
=

= − = =∑ … (3.6)

3.1.3.2 Least Squares Linear Regression

Regression analysis is used to assess the relationship between dependent variables and

one or more independent variables. The independent variables are known as predictor

variables. To avoid confusion in this chapter, the independent variables are the

neighboring and shifted coefficients while the predictor variables are the DCT

coefficients. The coefficients in this section are used to calculate the least square linear

regression metric (Legendre, 1805, Gauss, 1809, pp. 205-224; Davis, 1809/1857, pp.

249-273; Dillon and Goldstein, 1984, pp. 209-250; Draper and Smith, 1998; Neter et al.,

1996). The idea is to predict the mean value of the dependent variables (in this case DCT

coefficients) on the basis of the fixed neighboring coefficients and shifted coefficients.

The regression model with multiple variables in N is written as

0 1 1 2 2D̂ N Nβ β β= + + + (3.7)

where β0 is referred to as the intercept coefficient and the remaining β’s are the slope

coefficients which gives the change in D with respect to N. Theβ’s are calculated as

() 1T TN N N Dβ
−

= (3.8)

94

The intercept coefficient β0 in Equation (3.7) cannot be calculated using Equation (3.8)

for D and N. To solve this problem a column vector of 1’s is added to the front of the

matrix N. The column of 1’s allows the regression model to contain the term β0. If the β0

term is omitted from the regression model, the response of the model is zero when all of

the predictor variables are zero. In a straight line regression model the line has a zero

intercept when β0 = 0 resulting in a poor model (Draper and Smith, 1998).

The vectors for the regression metric in this subsection for the three directions and

frequencies are calculated as follows:

• Vertical direction and low frequencies

()
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

VL VL VL Right VL Down VL Diag

T T
VL VL VL VL VL

VL VL VL

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

• Diagonal direction and low frequencies

()
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

DL DL DL Right DL Down DL Diag

T T
DL DL DL DL DL

DL DL DL

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

• Horizontal direction and low frequencies

()
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

HL HL HL Right HL Down HL Diag

T T
HL HL HL HL HL

HL HL HL

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

• Vertical direction and medium frequencies

()
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

VM VM VM Right VM Down VM Diag

T T
VM VM VM VM VM

VM VM VM

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

95

• Diagonal direction and medium frequencies

()
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

DM DM DM Right DM Down DM Diag

T T
DM DM DM DM DM

DM DM DM

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

• Horizontal direction and medium frequencies

()
, , ,

1

ˆ 1'

ˆ ˆ ˆ

ˆ ˆ

HM HM HM Right HM Down HM Diag

T T
HM HM HM HM HM

HM HM HM

N s N S S S

N N N D

D N

β

β

−

⎡ ⎤= ⎣ ⎦

=

=

For each of the coefficients investigated in D a set of neighboring coefficients were

selected based on experimental analysis and an understanding of both JPEG compression

and how the embedding methods alter the coefficients. Determining the number of

neighboring coefficients can be expanded to sequential selection used in regression, e.g.,

backward selection, forward selection and stepwise selection (Dillon and Goldstein,

1984).

3.1.4 Statistics Calculation

By using the metrics derived from the previous subsection, the statistics are calculated

over the vectors in subsection 3.1.2 and 3.1.3 in order to generate the features. Table 3.1

lists five statistics: mean, standard deviation, skewness, kurtosis, and entropy along with

their calculation.

96

Table 3.1. Test statistics for generating features.
Test Statistic Statistical Function F(⋅)

Mean () ()
1

1 n

i
i

F D D D
nμ μ

=

= = ∑

Standard Deviation () () ()()
1/ 2

2

1

1 n

i
i

F D D D D
nσ σ μ

=

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

∑

Skewness () ()
()()

()

3

1
3

n

i
i

D D
F D D

Dγ

μ
γ

σ
=

−
= =

∑

Kurtosis () ()
()()

()

4

1
4

n

i
i

D D
F D D

Dκ

μ
κ

σ
=

−
= =

∑

Entropy () () () ()
1

= log
n

E i i
i

F D E D D D
=

= − ∑

3.1.5 Features

The new feature generation method produces a total of 180 features for an input image.

By taking the differences between the calculated statistics, the number of features in the

following is dependent on the DCT decomposition and the selected coefficients as

described in subsection 3.1.2 through 3.1.4. D includes the coefficient vectors in 3.1.2.1,

D̂ is the regression model described in 3.1.3.2, D are the mean differences in 3.1.3.1,

N contains the average of the neighboring coefficients in 3.1.2.3, SRight, SDown and SDiag

are block shifted coefficient vectors in 3.1.2.2, and the statistical calculation functions F(⋅)

are described in 3.1.4.

() ()ˆF D F D− generates 30 features

() ()F D F D− generates 30 features

() ()−F D F N generates 30 features

() ()RightF D F S− generates 30 features

97

() ()DownF D F S− generates 30 features

() ()DiagF D F S− generates 30 features

These are denoted as raw features. The three detection systems which are going to be

described in the following sections consider these features as inputs in order to achieve

the goal in this research.

3.2 Feature Ranking/Selection

The previous section presents a feature generation method that results in 180 features that

identify the difference between clean and stego images. Some of these features separate

the clean from stego images better than others. In this section a new feature ranking

method for two-class kernel Fisher’s discriminant and support vector machines classifiers

is described that identifies the best features to use for accurate classification (Rodriguez

et al., 2008a).

3.2.1 SVM-Kernel Feature Ranking (KFR)

SVM-KFR consists of a three-step feature ranking strategy to choose representative

features and remove noisy features for a data set with multiple features. The first step is

to remove one feature at a time from the training data set. Specifically remove feature m

from xi denoted as xi
(m), where (m) indicates the removed feature m. The second step is to

solve Equation (2.70) to identify the support vectors, xk, and the non-negative alpha

vectors, Ĉ ≥ αi ≥ 0. Once the support vectors are identified the kernel matrix is

calculated as:

() ()() () (), ,=x x x xm m m
k j k jK K . (3.18)

98

The final step multiplies the kernel matrix with the m feature removed, () (),x xm
k jK by

the alpha vectors, α(m), and associated class labels y. By rewriting Equation (2.71) the

multiplication results in the following solution:

()() () ()()

1
,α

=

= +∑x x x
s

m m m
j k k k j

k
f y K b . (3.19)

This projection results in approximated class labels without the bias shown in Equation

(2.70). In the event a feature with strong class separability is removed an incorrect

estimate results. As an example, consider a nonlinearly separable set of 50 samples with

100 features and equal number of classes. Figure 3.8 shows the mixture of classes when a

strongly separating feature is removed. The x-axis in Figure 3.8 represents the index, j, of

sample ()x m
j and the y-axis represents the predicted class value, ()() ,x m

jf for each sample

after calculating Equation (3.19) where the alpha values are in the range of ()0 6α≤ ≤m
k .

The range is determined by the upper bound Ĉ when solving Equation (2.70).

99

Figure 3.8. One dimensional mapping of Equation (3.19) when the strong ranked feature

is removed.

On the other hand if a noise-like feature in class separability is removed the two classes

show a separation. Figure 3.9 shows the result of removing a weak ranked feature.

100

Figure 3.9. One dimensional mapping of Equation (3.19) when the weak ranked feature is

removed.

For ranking purposes, the projection of the samples ()()x m
jf is summed. The problem

arises when positive and negative values are summed resulting in potential cancelation of

the results. Because of this, the labels yi in Equation (3.19) are excluded from the

decision function as

()() () () ()()()

1
,

s
m m m mm
j k k j

k
f K bα

=

= +∑x x x . (3.20)

The solution for the ranking can be defined as the summation of Equation (3.20) resulting

in a ranking value for feature m as follows:

() () ()()()

1 1

 ,
s s

m m mm
m k k j

j k

R K bα
= =

= +∑∑ x x (3.21)

101

where ()m
kα contains the weights for the support vectors. It is important to note that only

the support vectors are used to calculate K(m) during the ranking process implying that
() ()m m
k j=x x . A normalizing factor of 1/ can be applied to the ranking values Rm for the

feature ranking criterion but is not required. The algorithm of this method is provided as

follows:

1. For each of the n features perform steps 2, 3 and 4.

2. Remove the current feature m from the data set xi and train the SVM model,

extracting the α-vectors and the support vectors xk.

3. Calculate K(m) using the support vectors xk. from step 2

4. Assign a ranking value Rm according to Equation (3.21) and replace the feature m.

5. After completion of the loop, sort the ranking values Rm in descending order.

6. Select the r highest ranked features for training the SVM classification model.

Equation (3.20) estimates the effect of the optimization solution in Equation (2.70) by

removing one feature at a time. The summation of the mapping () () ()()() ,m m mm
k k jKα x x in

Equation (3.21) seeks to maximize the distance between classes, C = {-1, +1}. To explain

the mathematical representation of the ranking criterion in Equation (3.21), it is necessary

to re-examine f(x) from Equation (2.71) which denotes the solution for classification

determined by the values of the vector α and the bias b at a particular stage of the

learning. Letting

() ()
1

,
s

j j j k k k j j
k

E f y y K b yα
=

⎛ ⎞
= − = + −⎜ ⎟

⎝ ⎠
∑x x x (3.22)

102

be the error difference between the function output and the target value (Cristianini and

Shawe-Taylor, 2000) on the training data x, it is possible to show the relationship

between Equations (2.71) and (3.21). For an ideal case the desired value of Ei would be 0.

The goal is to retain the features that approximate the sum as follows

() () ()()()

1 1
,

s s
m m mm

k k j j j
j k

K b yα
= =

⎛ ⎞
+ ≈⎜ ⎟

⎝ ⎠
∑ ∑ ∑x x (3.23)

Setting the ideal situation of Ej equal to 0 the following equation is used

()
1

, 0
s

j k k k j j
k

E y K b yα
=

⎛ ⎞
= + − =⎜ ⎟

⎝ ⎠
∑ x x (3.24)

where 1,...,j = . Using the absolute values of yk and yi results in the following equation:

() () ()()()

1 1
,

s s
m m mm

k k j jj
j k

K b yα
= =

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
∑ ∑ ∑x x (3.25)

which is similar to Equation (3.23). When a feature is removed, a larger ranking indicates

a prediction farther away from the true class, yi. The Rm criterion allows a view of how

well the SVM model separates the space in the absence of the removed feature.

Figures 3.10 and 3.11 show the values of the decision function ()()x m
jf when the highest

and lowest ranked features are removed. The axes of Figure 3.10 and 3.11 represent the

index of sample ()m
jx on the x-axis and the y-axis represents the value of the sample after

calculating Equation (3.21). In Figure 3.10 the top ranked feature is removed showing the

103

space between 0 and 6. When Equation (3.21) is calculated this results in a large ranking

value.

Figure 3.10. One dimensional mapping of Equation (3.20) when the highest ranked

feature is removed.

In Figure 3.11 the lowest ranked feature is removed showing the space converging on 1.

This will result in a ranking value approximately equal to jy indicating a low ranking.

104

Figure 3.11. One dimensional mapping of Equation (3.20) when the lowest ranked

feature is removed.

While the space is not perfectly separated in Figure 3.10 and 3.11, the reader should be

aware of the fact that the figures do not show a mapping of () ()() ,α +x xm m
k k jK b with the

top ranked features. The two figures are shown to give an insight of the effects a removed

feature has on the mapping from the input space to the ranking space using Equation

(3.21).

In Figure 3.12 the top 25% of the ranked features are kept. In this simple example Figure

3.12 shows that maintaining the top ranked features the error function in Equation (3.22)

can be trained to zero.

105

Figure 3.12. One dimensional mapping of Equation (3.19) when the top 25% of the

ranked features are kept.

This method takes advantage of the classification decision function Equation (2.71). The

simplicity of this method makes it ideal for inclusion in most kernel based classifiers with

decision function similar to Equation (2.71). In the next subsection this ranking method is

applied to the kernel Fisher’s discriminant classifier.

3.2.2 Kernel Fisher’s Discriminant Classifier Kernel Feature Ranking (KF-KFR)

The same application in Section 3.2 can be extended to ranking features for the KFD

classifier. The first step is to calculate the initial alpha vectors as follows:

()
() ()

()
1 1
m m

m
m

M M
Nμ

α − +−
= (3.26)

106

where

() () ()

() () ()

1

1

1

1

1
11

1
11

1 ,

1 ,

−

−

+

+

−
=−
∈

+
=+
∈

=

=

∑

∑

x x

x x

m m
i j

j
j C

m m
i j

j
j C

M K

M K
 (3.27)

and

() () () () ()
1

1, ,
=
∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑

C

C
C

x x x x
Tm m m

i j i j
j
j

N K I K

(3.28)

where C = {C-1,C+1} = {-1,+1}. Mika, et al. (1999) discuss Numerical issues and

Regularization regarding the calculation of Equation (3.28). This is resolved by simply

adding a multiple of the identity matrix to N defined as:

() ()m mN N Iμ μ= + (3.29)

The next step is to use the alpha vectors and the kernel matrix to project the n-1

dimensional input feature space into a one dimensional space as follows:

() () ()x̂ , α= x xm m

i jK . (3.30)

The projection in Equation (3.30) now becomes the space that is to be solved using an

optimization solution. Mika, et al. (1999) use the Matlab Optimization Toolbox (Matlab,

2007) to solve the optimization problem with the projected space calculated in Equation

(3.30). For the interested reader the optimization problem is described in detail on pp.

460-462 of (Scholkopf and Smola, 2002). In this paper the one dimensional SMO (Franc

107

and Hlavac, 2007) is used as the optimization solution. This results in the non-negative

alpha vectors ()1ˆ ˆ ˆ,...,iα α α= with an upper bound Ĉ, ˆ ˆ 0α≥ ≥C . The support vectors for

the KFD trained model are xk = xi and the decision function of the KFD classifier is

written as sign(f(x)) where f(x) is defined by:

() () ()
1

ˆ ,i i i
i

f b y K bφ α
=

= + = +∑x w x x x . (3.31)

The bias b is calculated by obtaining the average as in Equation (2.65). The final step is

to rewrite Equation (3.21) to calculate the ranking values as follows:

() ()()

1 1

ˆ ,α
= =

= +∑∑ x xm m
m i i j

j i

R K b . (3.32)

The algorithm for the kernel Fisher’s feature ranking method is as follows:

1. For each of the n features perform steps 2, 3 and 4.

2. Remove the current feature m from the data set xi training the KFD model using

Equations (3.26) through (3.30) to obtain the alpha vectors, support vectors and

bias.

3. Assign a ranking value Rm according to Equation (3.32) and replace the feature m.

4. After completion of the loop, sort the ranking values Rm in descending order.

5. Select the r highest ranked features for training the final KFD classification model.

The procedure is conducted for each feature and ranked in descending order where the

largest value corresponds to the feature of most importance. It should be noted that the

calculation of the alpha weights in Equation (3.26) is an important step when ranking the

features.

108

3.3 Learning Decision Trees using Kernel mapping for creating Multi-class

Classification from two-class KFD and SVM Classifiers

In this section a multi-class tree structure for performing multi-class classification with

two-class KFD and SVM classifiers is described. The structure and learning of the tree is

known as a learning decision tree (Russell and Norvig, 2003). Designing the structure of

the tree, at each node a distance measure in the kernel space is calculated between three

or more classes. A branch connects two nodes within the tree. Branches are added from

each node, known as a parent node, so long as more than one class remains. A leaf node

from a parent node specifies the class value when a single class is reached, that is, a node

with no successor in the tree. The depth of the tree is determined by the number of nodes

along a path from the top parent node to a leaf node. For example, Figure 3.13 shows the

tree structure for a ten-class problem where the labels represent the individual classes, 1 =

Clean, 2 = F5, 3 = JP Hide, 4 = JSteg, 5 = Model-based, 6 = Model-based Ver. 1.2, 7 =

OutGuess, 8 = Steganos, 9 = StegHide, 10 - UTSA.

Figure 3.13. Decision tree for a 10-class classification problem with 10 leaf nodes, 9

parent nodes and a maximum depth of 6.

The top node labeled with [1 2 3 4 5 6 7 8 9 10] is at the first level of the tree and the

parent node of nodes labeled as [1 2 3 4 5 6 8] and [7 9 10]. The leaf nodes from left to

right in this tree are label as [1], [2], [3], [4], [5], [6], [8], [7], [9] and [10]. This tree has a

109

maximum depth of 6 which is the path from the parent node [1 2 3 4 5 6 7 8 9 10] to [5]

or [6].

For this problem there are several steps in learning the tree. The first step is to map the

input training set xi = [x1, x2,…,x] ∈ n , i = 1,…, , φ(xi): X→F from input space into a

potential higher dimensional space F ∈ called kernel space. The mapping φ(xi) is

represented by a kernel function K(xi, xj) that defines an inner product in . Each sample

in the training set contains one target value yi ∈ C = [C1,C2,…,Cc], i = 1,2,…, . which

describes the class to which the sample is a member of. The parameters for calculating

the kernel matrix are important when training the tree and the two-class classifiers at each

node. The kernels used in this research are as follows

1. linear: (), =x x x xT
i j i jK

2. polynomial: () (), , 0γ γ= + >x x x x
dT

i j i jK r

3. radial basis function (RBF): () () 2

2

1, , 0
2

γ
γ

σ

⎛ ⎞− −⎜ ⎟
⎝ ⎠= = >

x x
x x

i j

i jK e

4. sigmoid: () (), tanh γ= +x x x xT
i j i jK r

where, γ, r, and d are kernel parameters.

The distance measure used in this section is an expansion of the KFD (Mika et al., 1999).

The second step is to calculate the initial alpha vectors for a multi-class problem. The

alpha vectors are defined as follows:

ˆ
μ

α =
M
N

 (3.33)

110

where

() ()

()

1

1 2

1

1
1 / 2

1 ,

−

= =

=
∈

= −
−⎡ ⎤⎣ ⎦

=

∑∑

∑ x x

p q

Ck

k

k
k

c c

C C
p q

C i j
jC
j C

M M M
c c

M K
 (3.34)

and

() ()
1

1, ,

μ μ

=
∈

= +

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑

C

C
C

x x x x
T

i j i j
j
j

N N I

N K I K
(3.35)

The regularization value μ must be large enough so that the () 1

μ

−
N is positive definite

(Mika et al., 1999). The next step is to use the alpha vectors and the kernel matrix to

project the input feature space into a one dimensional space as follows:

() ˆˆ ,i i jK α=x x x (3.36)

where x̂ is an [× 1] vector. Now the individual class distance can be calculated as

1

1ˆ ˆ
=
∈

= ∑ x
Ck

k

k
k

C i
iC
i C

D

 (3.37)

The distance vector ˆ
kCD is of length c. Once the distance vectors are calculated, the next

step is to taking the average of ˆ
kCD which provides a separation point between classes

111

when Ck > 2. For example the top node in Figure 3.13 contains classes [1 2 … 10] and the

classes are divided into two branches. The left branch contains classes [1 2 3 4 5 6 8]

while the right branch contains classes [7 9 10]. Figure 3.14 is the corresponding figure to

Figure 3.13 which contains the 10 classes totaling 1000 samples as shown on the x-axis

and the sample values on the y-axis. The distance values of ˆ
kCD are shown within the

figure as well. Taking the average of ˆ
kCD is -5.0313 which is the value used to separate

the ten classes into two sub classes.

Figure 3.14. Distance values ˆ
kCD for a 10 class problem.

Once a new branch with more than two-classes is built the distance measure is calculated

again. The nodes of the tree are expanded from left to right until a leaf node is reached.

112

Consider the node labeled as [2 3], this node will contain two leaf nodes labeled [2] and

[3].

The decision tree learning algorithm is shown as follows:

1. Input training data xi with class labels, the kernel parameters and the classifier

(KFD or SVM).

2. If xi is empty return.

3. Else if class labels of xi are all the same make a leaf node and return.

4. Else if xi contains two-classes make two leaf nodes, a left and right, and return.

5. Else if xi contains three-classes calculate the average distance for each class.

6. Divide the input data into two classes creating two branches, a left and right.

i. If the left Brach contains more than two classes step 1.

ii. Else make a leaf node and go to step iii.

iii. If the right branch contains more than two classes go to step 1.

iv. Else make a leaf node and return.

7. Return tree

8. Train the two-class classifiers for each node of the tree.

3.4 Fusion of Multi-Class Classification Systems

In this section the fusion methods of the multi-class detection systems is covered. The

class labels of the 8 multi-class detection systems are fused. In this research there are 10

image classes, consisting of clean, F5 (Westfeld, 2001; 2003), JP Hide (Latham, 1999),

JSteg (Upham, 1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2

(Sallee, 2008a), OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) and

UTSA (Agaian et al., 2006). The three fusion methods, AdaBoost (Bishop, 2006, pp.

358), Bayesian Belief Networks (Murphy, 2001) and Probabilistic Neural Networks

(Leap et al., 2007), used in this section were described in Chapter 2 Section 2.7.

113

3.4.1 AdaBoost Boosting

In this sub section the 7 detection systems are fused using AdaBoost (Rodriguez and

Peterson, 2008b). Each classification model is defined as Mk. The input training set is xi =

[x1, x2,…,x] ∈ n, with each sample in the training set contains one target value C = Ck

= [C1,C2,…,Cc], k = 1,2,…,c, (known as the class labels yi ∈ C, i = 1,2,…,). The

method implemented in this research is from Bishop (2006, pp. 658). The method

described by Bishop (2006) has three steps as follows

 1. The data weighting coefficients {wi} are initialized as ()1 1=iw for i = 1,…, .

 2. For k = 1,…,7:

 (a) Fit a classifier Mk(x) to the training data by minimizing the weighted

 error function

() ()()
1=

= ≠∑ xk
k i k i i

i
J w I M y

 where ()()≠xk i iI M y is the indicator function and equals 1 when Mk(xi)

 ≠ yi and 0 otherwise.

 (b) Evaluate the quantities

() ()()
()

1

1

ε =

=

≠
=

∑

∑

xk
i k i i

i
k

k
i

i

w I M y

w

 and then use these to evaluate

1ln εα
ε

⎧ ⎫−
= ⎨ ⎬

⎩ ⎭
k

k
k

 (c) Update the data weighting coefficients

() () ()()1 α ≠+ = xk k i iI M yk k
i iw w e

114

 3. Making a prediction using the final trained model for an input image sample

 { }0 , 5, , , , 1.2, , , ,∈x C F JPH JS MB MB OG STN SH UTSA is given by

() ()
7

0 0
1
α

=

= ∑x xk k
k

f M

3.4.2 Bayes Network for Model Averaging

In this sub section the 7 detection systems are fused using a Bayesian network (Rodriguez

et al., 2008b). Each classification model is defined as Mk as shown in Figure 3.15.

Figure 3.15. Detection structure for 8 classification models.

Table 3.2 shows the prior probabilities that a target T is a clean (C), F5, JP Hide (JPH),

JSteg (JS), Model-based (MB), Model-based Version 1.2 (MB12), OutGuess (OG),

Steganos (STN), StegHide (SH) and UTSA (UTSA) image.

Table 3.2. Distribution of the image types.
Target(T)

T =

C

T =

F5

T =

JPH

T =

JS

T =

MB

T =

MB1.2

T =

OG

T =

STN

T =

SH

T =

UTSA

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

For example an input image sample

{ }0 , 5, , , , 1.2, , , ,∈x C F JPH JS MB MB OG STN SH UTSA as shown in Figure 3.15 fed into

each of the trained classification detection systems will have a class label assigned from

Input Image (x0)

M4 M3 M2 M7 M6 M5 M1

115

each of the systems. So, to determine the probability that the class label is C when each

of the models returns a class label as C the model averaging topology dictates a joint pdf

as

()
() () () () () () () ()

1 2 3 4 5 6 7

1 2 3 4 5 6 7

, , , , , , , =P T M M M M M M M

P M T P M T P M T P M T P M T P M T P M T P T

The method used to facilitate the computations in the model averaging is Murphy’s

(2001) Bayes Net Toolbox (BNT) for Matlab resulting in the following calculations.

()1 2 3 4 5 6 7" ", " ", " ", " ", " ", " ", " "= = = = = = = =P T C M C M C M C M C M C M C M C

()
()

()

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

0 1 2 3 4 5 6

, " ", " ", " ", " ", " ", " ", " "
" ", " ", " ", " ", " ", " ", " "

, " ", " ", " ", " ", " ", " ", " "
, " ", " ", " ", " ", " ",

= = = = = = = =
=

= = = = = = =

= = = = = = = =
=

= = = = = =x

P T C M C M C M C M C M C M C M C
P M C M C M C M C M C M C M C

P T C M C M C M C M C M C M C M C
P T M C M C M C M C M C M()

0

7" ", " "= =∑
x

C M C

Using Bayes’ Rule the numerator can be represented as

() () () () () () () ()1 2 3 4 5 6 7P M C P M C P M C P M C P M C P M C P M C P T

() () () ()(
() () () ())

1 2 3 4

5 6 7

" " " " " " " "

" " " " " "

= = = = = = = = =

= = = = = = =

P M C T C P M C T C P M C T C P M C T C

P M C T C P M C T C P M C T C P T C

and the denominator as

()
0

0 1 2 3 4 5 6 7, " ", " ", " ", " ", " ", " ", " "= = = = = = = =∑
x

xP T M C M C M C M C M C M C M C

() () () ()(

() () () ())
0

1 0 2 0 3 0 4 0

5 0 6 0 7 0 0

" " " " " " " "

" " " " " "

= = = = = = = = =

= = = = = = =

∑
x

x x x x

x x x x

P M C T P M C T P M C T P M C T

P M C T P M C T P M C T P T

116

3.4.3 Probabilistic Neural Network (PNN) Fusion

In this method the outputs of individual classification models are treated as input features

to train the PNN fusion system. The key is to use the class labels from each of the

systems as posterior probability estimates and employing them as features in the neural

network. It should be noted that one of the posterior probabilities from the input classifier

should be removed. For the seven individual ten-class classifiers used in this research

each of the classification models, Mk, will contribute seven inputs for training the PNN.

Figure 3.16. Probabilistic Neural Network Classification Structure.

xi

Output
Probability of
Belonging to

Class Ck

Input
Training
Image

Features
xi ∈ n

P(Ck|xi)

M1

M2

M3

M4

M6

M5

M7

7 10-class
Detection
Models

9 Inputs
Each From

the 7 Models

60
 in

pu
ts

 to
 tr

ai
n

th
e

10
-c

la
ss

 P
N

N

117

3.5 Summary

This chapter presented three new methods for improving multi-class detection systems

for the kernel Fisher’s discriminant and support vector machines. The first method used

in the system is the generation of features using the DCT for JPEG images. The major

components of the new feature generation method are the decomposition of the DCT

coefficients and the use four different predictors. The second new method consists of a

new feature ranking method which uses the individual classifiers to rank the order of the

features on class separability in the kernel space. The final method consists of a multi-

class tree which is expanded with the use of a distance measure between classes in the

kernel space. In addition to the three new methods used in the development of multi-class

classification for KFD and SVM is the fusion of multiple steganalysis systems. The

fusion techniques used are based on modified implementation from AdaBoost (Bishop,

2006), Bayesian networks (Murphy, 2001) and probabilistic neural networks (Leap et al.,

2007).

Chapter 4 demonstrates results with an increase in classifier performance. The results

shown compare an existing multi-class SVM classifier with the new methods shown in

this chapter, feature selection, multi-class classifier and a modified simple fusion method.

118

IV. Analysis and Results

The goal of the steganalysis classification system is to identify an input JPEG image as a

clean image or identify the embedding algorithm used. The nine embedding algorithms

tested over include F5 (Westfeld, 2001; 2003), JP Hide (Latham, 1999), JSteg (Upham,

1993), Model-base (Sallee, 2003; 2006), Model-based Version 1.2 (Sallee, 2008a),

OutGuess (Provos, 2004), Steganos (2008), StegHide (Hetzl, 2003) or UTSA (Agaian et

al., 2006). This chapter compares the performance of the KFD and SVM multi-class

system developed against four (i.e., EM, k-NN, Parzen window and PNN) multi-class and

three fusion (i.e., AdaBoost, Bayes and PNN fusion) classification techniques. In order to

statistically compare the systems, k-fold cross validation is used for both training and

testing the system within a clean JPEG image dataset and nine stego image datasets. The

statistical tool applied for analysis is the two tailed student t-test.

The clean JPEG image dataset used as a cover image set for analyzing the system

includes 1000 RGB images of size 512×512 with a quality factor of 75%. Nine stego

image datasets are generated from the clean dataset with a stego message from the

aforementioned nine embedding tools of 4000 characters which is equivalent to one page

of text. The number of DCT coefficients altered within a color layer of a JPEG image is

known as the embedding rate (Kharrazi et al., 2005). The average embedding rate of the

coefficients altered for each stego image dataset are as follows:

• F5 has an average embedding rate 6.25%.

• JP Hide (JPH) has an average embedding rate 3.76%

• JSteg (JS) has an average embedding rate 7.53%

• Model-based (MB) has an average embedding rate 5.36%

• Model-based Version 1.2 (MB1.2) has an average embedding rate 5.68%

• OutGuess (OG) has an average embedding rate 3.24%

• Steganos (STN) has an average embedding rate 0.75%

• StegHide (SH) has an average embedding rate 2.30%

• UTSA has an average embedding rate 5.38%

119

Note that in testing and training, 100 images are chosen from each clean and stego image

dataset. The clean images used within the clean image dataset do not appear as stego

images used within the stego image datasets, nor does any stego image reappear

embedded with another steganography algorithm. For example, none of the F5 images

were the same as the JSteg images.

This chapter demonstrates the performance of the steganalysis classification system

developed in this research. Section 4.1 describes the statistical methods of measure used

for testing and validation in the experiment. The results include a comparison of the

feature generation methods: wavelet feature generation, DCT feature generation and DCT

directional and frequency decomposition feature generation. In Section 4.3, results on the

steganalysis dataset for eight multi-class classification methods including expectation

maximization with mixture models (EM), k-nearest neighbors (k-NN), kernel Fisher’s

discriminant (KFD), Parzen window, probabilistic neural networks (PNN), support vector

machines (SVM) and StegoWatch are discussed, respectively. Section 4.4 demonstrates a

performance improvement when utilizing and fusing several classification algorithms

together. Experimental results of three fusion techniques using AdaBoost, Bayesian

neural network, and probabilistic neural network, are shown. Finally, a summary of all

the results is presented in Section 4.5.

4.1 Confirming and Validating the Analysis

In statistics a result is statistically significant if it is unlikely to have occurred by chance.

A statistically significant difference between two sets of results simply implies that there

is statistical evidence that there is a difference. This however, does not indicate that the

difference is necessarily large. In this research the results are generated using k-fold cross

validation to determine the classification accuracy of the classification models. A t-test

between paired samples about the means with a confidence level of 95% is used to

determine the statistical significance of the results.

120

In k-fold cross-validation, the original sample is partitioned into k subsamples. Of the k

subsamples, a single subsample is retained as the test data for testing the model, and the

remaining k-1 subsamples are used as training data. The cross-validation process is then

repeated k times (the folds), with each of the k subsamples used exactly once as the

validation data. The k results from the folds are averaged to produce a single estimation

(Kohavi, 1995; Mitchell, 1997; Russell and Norvig, 2003).

In this chapter the data is partitioned into five groups of equal size as shown in Figure

4.1. For each run four of the groups are used for training the classification model and the

remaining group is used for testing the model. This procedure is repeated for five runs

where the runs are for all five possible choices of the held out test group.

 Total Number of Samples

Run 1 Testing Data Training Data

Run 2 Training Data Testing Data Training Data

Run 3 Training Data Testing Data Training Data

Run 4 Training Data Testing Data Training Data

Run 5 Training Data Testing Data

Figure 4.1. 5-fold cross-validation with 5 runs consisting of 80% of the data for training

the classification model and 20% for testing the training model.

To ensure that the test of significance is calculated properly the Lilliefors test for

normality is used to determine if the results being analyzed are normally distributed

(Lilliefors, 1967; Abdi and Molin, 2007). If the result is determined that the results are

normally distributed the t-test is used to test for statistical significance (Hogg, and Tanis,

1993; Kohavi, 1995; Rice, 1995; Wackerly et al., 1996). On the other hand, if the test for

normality fails then the Wilcoxon test is used to determine if the results are significant.

121

In the next section the results are shown in tables using the 5-fold cross validation. The

tables are accompanied by analysis to determine if the reported results are statistically

significant.

4.2 Feature Generation Method Comparison

The results in this section show a comparison between the three feature generation

methods of wavelet features, DCT features, and DCT directional and frequency

decomposition features, and results that use all three feature generation methods

combined. Prior to classification the data is prepared using the data standardization

described in subsection 2.3.1 (Dillon and Goldstein, 1984, pp. 12-13). Feature

discrimination capability results from executing a SVM two-class classifier without and

with the SVM-kernel feature ranking described in subsection 3.2.1. The SVM method

used is SVMlight (Joachims, 1998, 2007). The feature ranking method used is the SVM-

kernel feature ranking method presented in Section 3.2. The kernel function

(),x xi jK used is the radial basis function
() 2

γ⎛ ⎞− −⎜ ⎟
⎝ ⎠

x xi j

e with the parameter

()()21/ 2 12γ = and the upper bound Ĉ = 12. The results of the analysis include the

percentage of true positive and true negatives shown on a class-by-class basis where the

clean image sets are compared against each steganography embedding image set. The

true negative indicates the percentage of clean images correctly classified as clean images,

while the true positive indicates the percentage of stego images correctly classified as

stego images. The average of true negative and true positive is the classification accuracy

(CA).

122

4.2.1 Wavelet Feature Generation (Lyu and Farid, 2004)

The results for the wavelet feature generation, which generates 72 features, are shown

without and with feature ranking in Tables 4.1 and 4.2, respectively.

Table 4.1. Classification accuracy for wavelet feature generation.

Clean

vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
True

Negative
64.8±

5.0
94.3±

9.8
98.1±

2.6
59.4±
13.6

59.5±
10.0

71.3±
8.7

74.8±
11.9

50.7±
6.1

80.7±
8.5

True
Positive

66.6±
.34

81.6±
6.3

98.1±
2.6

56.3±
9.7

56.9±
7.5

70.7±
9.2

68.5±
6.7

50.2±
7.0

78.4±
7.6

Classification
Accuracy

65.7±
3.9

87.9±
5.1

98.1±
1.0

57.8±
11.6

58.2±
8.7

71.0±
8.9

71.6±
8.0

50.4±
6.5

79.5±
6.7

Table 4.2. Classification accuracy for wavelet feature generation using feature ranking.

Clean

vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
No. of

Features 25 25 15 19 20 22 16 12 39

True
Negative

74.9±
4.4

99.0±
2.1

99.1±
2.1

71.6±
6.0

73.1±
6.9

74.1±
7.2

83.8±
2.8

64.6±
4.5

86.4±
4.0

True
Positive

78.0±
4.4

91.6±
8.6

98.1±
2.6

66.4±
3.4

69.6±
5.1

74.0±
6.5

72.6±
3.4

61.4±
2.6

82.9±
3.5

Classification
Accuracy

76.4±
2.7

95.3±
3.8

98.5±
1.3

69.0±
4.1

71.3±
5.5

74.0±
6.7

78.2±
2.4

63.0±
2.6

84.6±
3.2

The results shown in Table 4.2 indicate an improvement of detection accuracy by proper

selection of features during training. The second row shows the number of features

among 72 identified by the SVM-kernel feature ranking method. The statistical

significance of selecting features with the proposed feature saliency metric is depicted in

Table 4.3. As can be seen in the significance testing for classification accuracy, the Clean

vs. F5 image classes, Clean vs. MB1.2, and Clean vs. SH comparisons show statistically

123

significant difference in the mean, while the difference in the mean for the other

embedding methods are not statistically significant.

Table 4.3. t-test; paired two samples for means between Tables 4.1 and 4.2.
t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05

Image
Classes

Clean
vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
t-Stat 5.97 2.39 0.186 2.42 5.03 0.86 1.68 4.09 1.86

Statistically
Significant Yes No No No Yes No No Yes No

4.2.2 DCT Feature Generation (Pevny and Fridrich, 2006)

The results for the DCT feature generation (Pevny and Fridrich, 2006) are shown without

and with feature selection in Tables 4.4 and 4.5. The 274 features generated (Pevny and

Fridrich, 2006) are an extension of the original features described in Section 2.2.2

developed by Fridrich (2004).

Table 4.4. Classification accuracy for DCT feature generation.

Clean

vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
True

Negative
100±
0.0

100±
0.0

100±
0.0

99.0±
2.1

100±
0.0

100±
0.0

86.5±
6.9

100±
0.0

100±
0.0

True
Positive

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

87.8±
6.0

100±
0.0

100±
0.0

Classification
Accuracy

100±
0.0

100±
0.0

100±
0.0

99.5±
1.1

100±
0.0

100±
0.0

87.1±
6.0

100±
0.0

100±
0.0

124

Table 4.5. Classification accuracy for DCT feature generation using feature ranking.

Clean

vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
No. of

Features 12 24 5 7 7 5 23 5 5

True
Negative

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

89.1±
3.6

100±
0.0

100±
0.0

True
Positive

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

88.5±
5.7

100±
0.0

100±
0.0

Classification
Accuracy

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

88.7±
2.8

100±
0.0

100±
0.0

The results shown in Table 4.5 indicate after the SVM-kernel feature ranking, only a few

of the 274 features are necessary for a perfect classification accuracy in most of the cases

except the Clean vs. STN image classes. The statistical significance of selecting features

with the proposed feature ranking is depicted in Table 4.6. As can be seen in the

significance testing for classification accuracy, only the Clean vs. STN image classes

show significant difference in the mean, while the difference in the mean for the other

stego embedding methods are not statistically significant. Although there are no

improvement (quite difficult to improve from a perfect classification) in the classification

accuracy even with the inclusion of a feature ranking method, the utility is apparent in the

reduced number of features necessary to still achieve perfect classification.

Table 4.6. t-test; paired two samples for means between Tables 4.4 and 4.5.
t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05

Image
Classes

Clean
vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
t-Stat 0.0 0.0 0.0 1.00 0.0 0.0 0.43 0.0 0.0

Statistically
Significant No No No No No No Yes No No

125

4.2.3 DCT Directional and Frequency Decomposition

The results for the DCT directional and frequency decomposition feature generation

described in Section 3.1 are shown without feature selection in Table 4.7 and with feature

selection in Table 4.8. This feature generation method results in 180 features.

Table 4.7. Classification accuracy for DCT directional and frequency feature generation.

Clean

vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
True

Negative
95.4±

5.3
99.0±

2.1
99.0±

2.1
99.0±

2.1
96.4±

5.7
94.5±

5.8
96.2±

6.0
98.0±

2.8
100±
0.0

True
Positive

95.4±
5.3

100±
0.0

98.2±
4.1

93.7±
4.9

93.8±
6.6

97.0±
2.7

89.2±
4.2

92.9±
6.3

100±
0.0

Classification
Accuracy

95.4±
2.1

99.5±
1.1

98.6±
2.0

96.3±
1.8

95.1±
2.3

95.7±
2.5

92.7±
1.9

95.4±
3.0

±100±
0.0

Table 4.8. Classification accuracy for DCT directional and frequency feature generation
using feature ranking.

Clean

vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
No. of

Features 21 35 22 26 27 24 23 25 22

True
Negative

98.2±
4.1

100±
0.0

100±
0.0

98.2±
4.1

98.2±
4.1

98.1±
2.6

100.0±
0.0

100±
0.0

100±
0.0

True
Positive

100±
0.0

100±
0.0

100±
0.0

98.1±
2.6

98.1±
2.6

98.1±
2.6

97.1±
2.6

96.3±
3.8

100±
0.0

Classification
Accuracy

99.1±
2.0

100±
0.0

100±
0.0

98.1±
1.9

98.1±
1.9

98.1±
1.1

98.5±
1.3

98.1±
1.9

100±
0.0

The results shown in Table 4.8 indicate an improvement of detection accuracy by proper

ranking of features during training. The second row shows the number of features among

180 identified by the presented feature saliency metric, i.e., the SVM-kernel feature

ranking method. The statistical significance of selecting features with the proposed

feature ranking is depicted in Table 4.9. As can be seen for the classification accuracy

and significance testing, the Clean vs. F5, Clean vs. MB1.2, Clean vs. STN, Clean vs. SH

126

embedding methods show significant difference in the mean, while the difference in the

mean for the other embedding methods are not statistically significant.

Table 4.9. t-test; paired two samples for means between Tables 4.7 and 4.8.
t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05

Image
Classes

Clean
vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
t-Stat 4.06 1.00 1.51 1.69 6.37 2.23 5.94 3.29 0.0

Statistically
Significant Yes No No No Yes No Yes Yes No

4.2.4 Combined Features

The wavelet features (Lyu and Farid, 2004), DCT features (Pevny and Fridrich, 2006)

and DCT directional and frequency decomposition features are combined to increase the

classification accuracy for each of the targeted embedding methods. The results for the

combined features are shown with feature selection in Table 4.10. The total number of

features in the combination of the three methods is 526.

Table 4.10. Classification accuracy for combined feature generation using feature
ranking.

Clean

vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
No. of

Features 11 18 5 6 10 5 15 7 5

True
Negative

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

True
Positive

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

Classification
Accuracy

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

The results shown in Table 4.10 indicate that perfect detection accuracies are obtained for

each image class by combining the three feature generation methods and performing a

proper ranking of the 526 features. Statistical significance comparisons are performed for

127

the combined features versus the first three compared methods in this chapter. The

statistical significance shown in Table 4.11 is the classification accuracy comparison

between the combined features from Table 4.10 and the wavelet feature generation

results of Table 4.2.

Table 4.11. t-test: paired two samples for means of wavelet features with feature ranking
vs. combined features with feature ranking.

t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05

Image
Classes

Clean
vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
t-Stat 19.4 2.73 2.44 16.5 11.4 8.55 20.0 30.8 10.6

Statistically
Significant Yes No No Yes Yes Yes Yes Yes Yes

The statistical significance shown in Table 4.12 is the classification accuracy comparison

between the combined features from Table 4.10 and the DCT feature generation results of

Table 4.5.

Table 4.12. t-test: paired two samples for means of DCT features with feature ranking vs.
combined features with feature ranking.

t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05

Image
Classes

Clean
vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
t-Stat 0.0 0.0 0.0 0.0 0.0 0.0 8.70 0.0 0.0

Statistically
Significant No No No No No No Yes No No

The statistical significance shown in Table 4.13 is the classification accuracy comparison

between the combined features from Table 4.10 and the DCT directional and frequency

feature generation results of Table 4.8.

128

Table 4.13. t-test: paired two samples for means of DCT directional and frequency
features with feature ranking vs. combined features with feature ranking.

t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05

Image
Classes

Clean
vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
t-Stat 1.0 0.0 0.0 2.17 2.17 4.00 2.17 0.0 0.0

Statistically
Significant No No No No No Yes No No No

The results shown in Table 4.11 indicate a significant improvement in classification

accuracy when comparing the wavelet features with feature ranking versus the combined

features with feature ranking method for all embedding methods, except JPHide and

JSteg. Table 4.12 only shows classification accuracy improvement for STN when

comparing DCT features with feature ranking (using 23 features) versus the combined

features with feature ranking (using 15 features). Similarly, in Table 4.13 classification

accuracy improvement is achieved for the detection of OG when comparing DCT

decomposition features with feature ranking (using 24 features) versus combined feature

with feature ranking (using 5 features). This analysis further highlights the strengths and

weaknesses of each of the feature generation methods and its capability of detecting

certain embedding methods. By combining the features from the three feature generation

methods and applying the SVM-kernel feature ranking method the classification accuracy

is improved in identifying stego images from clean images.

4.2.5 Summary of Feature Generation Methods

From subsection 4.2.1 to 4.2.4, the results from each individual feature generation

method and the combined features are demonstrated. A summary table on classification

accuracies is shown in Table 4.14. It is apparent that the combined features integrate the

capability of the three methods and achieves perfect classification accuracy.

129

Table 4.14. Classification accuracy summary for the individual feature generation and
combined features when feature ranking is used.

Clean

vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA

Wavelets 76.4±
2.7

95.3±
3.8

98.5±
1.3

69.0±
4.1

71.3±
5.5

74.0±
6.7

78.2±
2.4

63.0±
2.6

84.6±
3.2

DCT 100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

88.7±
2.8

100±
0.0

100±
0.0

DCT
Decomp

99.1±
2.0

100±
0.0

100±
0.0

98.1±
1.9

98.1±
1.9

98.1±
1.1

98.5±
1.3

98.1±
1.9

100±
0.0

Combined 100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

100±
0.0

The SVM-kernel feature ranking method has shown that the best subset of features can be

identified to improve classification accuracy of the two-class classifier. Table 4.15 shows

how each of the feature generation method contributes to the various stego methods in the

number of features to obtain the combined features for clean versus each stego image

class as in Table 4.10. For a list of specific features associated with the methods in Table

4.15 the reader is referred to Appendix A.

Table 4.15. Number of features used from each of the feature generation method in
feature combination.

Clean

vs.
F5

Clean
vs.

JPH

Clean
vs.
JS

Clean
vs.
MB

Clean
vs.

MB1.2

Clean
vs.
OG

Clean
vs.

STN

Clean
vs.
SH

Clean
vs.

UTSA
No. of

Features 11 18 5 6 10 5 15 7 5

Wavelets 1 3 0 0 0 0 2 0 0
DCT 5 12 5 5 5 5 7 5 5
DCT

Decomp 5 3 0 1 5 0 6 2 0

130

4.3 Results for Individual Multi-class Detection Systems

This section provides results for the seven multi-class classification systems designed to

solve the steganalysis problem of identifying the embedding methods. For each multi-

class detection system the process of performing feature preprocessing, feature extraction,

feature ranking, classification and multi-class classification is followed. In this section

the six classification methods described in Section 2.6 and a commercial tool are used as

part of seven individual multi-class detection systems: expectation maximization, k-

nearest neighbors, Parzen window, probabilistic neural networks, kernel Fisher’s

discriminant, support vector machines, and StegoWatch, which is a commercial detection

tool. The features used for classification are the combination of wavelet features, DCT

features and the presented DCT directional and frequency decomposition features. The

feature improvement includes data standardization, feature extraction and feature ranking

methods which are used in conjunction with the multi-class systems. All normalization,

feature ranking/selection, and settings were tested where only the best performing

combination is presented. For example, in the EM method in Section 4.3.1, the

Bhattacharyya distance is used instead of the other four feature ranking/selection

discussed in Section 2.5 since the Bhattacharyya distance provided the highest

classification accuracy combined with the other parameter combinations.

4.3.1 Expectation Maximization

Table 4.16 shows the classification accuracy from a 5-fold cross validation when

performing multi-class classification using expectation maximization (EM). The feature

improvement methods and classification parameters used in expectation maximization

are listed in the following, in which the combination of parameters provides the highest

classification accuracy.

• The data for this model is not normalized;

• Bhattacharyya distance is used for feature ranking with the top 34 out of 526

features selected;

131

• PCA is performed on the subset of un-normalized 34 features resulting in 12

principal components with eigenvalues greater than 1;

• The number of clusters are determined by using a clustering algorithm on each of

the training classes (Sanguinetti et al., 2005) prior to training the EM algorithm

where two-clusters are used for each class with the exception of the Steganos

class which requires three clusters, and each class is trained individually where

the 10 individual models return the mean and covariance’s used with the Bayes

classifier.

Table 4.16. Classification accuracy for 10-class expectation maximization classifier.
Actual

Pr
ed

ic
te

d

 Clean F5 JPH JS MB MB12 OG STN SH UTSA

Clean 83±
5.7

0±
0.0

0±
0.0

0±
0.0

1±
2.2

0±
0.0

0±
0.0

14±
4.4

0±
0.0

0±
0.0

F5 0±
0.0

88±
9.0

2±
2.7

0±
0.0

1±
2.2

0±
0.0

0±
0.0

2±
4.4

0±
0.0

4±
4.1

JPH 0±
0.0

2±
2.7

90±
7.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

5±
5.0

0±
0.0

0±
0.0

JS 0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

MB 0±
0.0

0±
0.0

0±
0.0

0±
0.0

51±
11.9

49±
11.9

0±
0.0

0±
0.0

5±
7.0

0±
0.0

MB12 0±
0.0

0±
0.0

0±
0.0

0±
0.0

38±
7.5

42±
9.0

0±
0.0

0±
0.0

6±
10.8

0±
0.0

OG 1±
2.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

99±
2.2

0±
0.0

0±
0.0

0±
0.0

STN 16±
6.5

0±
0.0

6±
8.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

79±
18.5

1±
2.2

0±
0.0

SH 0±
0.0

4±
4.1

2±
4.4

0±
0.0

9±
6.5

9±
6.5

1±
2.2

0±
0.0

86±
6.5

0±
0.0

UTSA 0±
0.0

6±
6.5

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

2±
2.7

96±
4.1

In Table 4.16, the results show that the MB and MB12 image classes cannot be separated

by the EM multi-class system since their classification accuracies are of mean values

51% and 42%, respectively. The results show that a MB stego image for testing has a

38% and 9% probability of being misclassified as MB12 and SH, respectively. On the

other hand, a MB12 stego image for testing has a 49% and 9% probability of being

misclassified as MB and SH, respectively. EM performs best in identifying JPH, JS, OG

132

and UTSA image classes with classification accuracies ≥ 90%. EM performs fairly well

in identifying Clean, F5, STN and SH image classes with classification accuracies

between 75% to 89%.

4.3.2 k–Nearest Neighbors (k-NN)

Table 4.17 shows the classification accuracy from 5-fold cross validation when

performing multi-class classification using k-nearest neighbors. The feature improvement

methods and classification parameters used in k-nearest neighbors are listed in the

following, in which the combination of parameters provides the highest classification

accuracy.

• The data is normalized using min-max normalization;

• Fisher’s linear discriminant is used for ranking the features with the top 34 out of

526 features selected;

• The number of nearest neighbors are determined experimentally based on

classification accuracy with k = 5.

133

Table 4.17. Classification accuracy for 10-class k-NN classifier.
Actual

Pr
ed

ic
te

d

 Clean F5 JPH JS MB MB12 OG STN SH UTSA

Clean 78±
7.5

0±
0.0

2±
2.7

0±
0.0

1±
2.2

0±
0.0

1±
2.2

30±
15.4

1±
2.2

0±
0.0

F5 1±
2.2

95±
6.1

1±
2.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

6±
6.5

JPH 0±
0.0

1±
2.2

92±
2.7

0±
0.0

0±
0.0

0±
0.0

0±
0.0

5±
8.6

0±
0.0

0±
0.0

JS 0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

MB 0±
0.0

0±
0.0

0±
0.0

0±
0.0

54±
6.5

52±
9.0

0±
0.0

0±
0.0

7±
10.9

0±
0.0

MB12 0±
0.0

0±
0.0

0±
0.0

0±
0.0

38±
4.4

47±
9.7

0±
0.0

0±
0.0

3±
4.4

0±
0.0

OG 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

99±
2.2

0±
0.0

1±
2.2

0±
0.0

STN 21±
8.2

1±
2.2

5±
3.5

0±
0.0

0±
0.0

0±
0.0

0±
0.0

65±
11.1

1±
2.2

0±
0.0

SH 0±
0.0

0±
0.0

0±
0.0

0±
0.0

7±
5.7

1±
2.2

0±
0.0

0±
0.0

86±
10.8

0±
0.0

UTSA 0±
0.0

3±
2.7

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

94±
6.5

In Table 4.17, the results show that the MB and MB12 image classes cannot be separated

by the k-NN multi-class system since their classification accuracies are of mean values

54% and 47%, respectively. This indicates that a MB stego image for testing has a 38%

and 7% probability of being misclassified as MB12 and SH, respectively. On the other

hand, a MB12 stego image for testing has a 52% probability of being misclassified as MB.

In addition, k-NN barely does better than a coin toss in classifying STN with a

classification accuracy of 65% with a 30% probability of misclassifying STN as Clean. k-

NN performs best in identifying F5, JPH, JS, OG and UTSA image classes with

classification accuracies ≥ 90%. k-NN performs fairly well in identifying Clean and SH

image classes with classification accuracies between 75% to 89%. When comparing

Table 4.17 with Table 4.16, both methods appear to misclassify MB and MB12. This is in

large part due to the features being used while two different feature ranking methods are

used, i.e., expectation maximization uses Bhattacharyya feature ranking with 34 features

and k-NN uses Fisher’s linear discriminant with 34 features, 30 of the 34 feature are the

same in both.

134

4.3.3 Probabilistic Neural Networks (PNN)

Table 4.18 shows the classification accuracy from 5-fold cross validation when

performing multi-class classification using PNN. The feature improvement methods and

classification parameters used in probabilistic neural networks are listed in the following,

in which the combination of parameters provides the highest classification accuracy.

• The data is normalized using Z-score normalization;

• The feature ranking is conducted using signal-to-noise ratio with the top 58 out of

526 features selected;

• Spread parameter σ = 0.24.

Table 4.18. Classification accuracy for 10-class PNN classifier.
Actual

Pr
ed

ic
te

d

 Clean F5 JPH JS MB MB12 OG STN SH UTSA

Clean 84±
5.4

0±
0.0

0±
0.0

0±
0.0

1±
2.2

0±
0.0

1±
2.2

53±
18.2

2±
2.7

0±
0.0

F5 0±
0.0

99±
2.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

0±
0.0

JPH 0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

0±
0.0

0±
0.0

JS 0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

MB 0±
0.0

0±
0.0

0±
0.0

0±
0.0

57±
9.0

42±
6.7

0±
0.0

0±
0.0

5±
7.0

0±
0.0

MB12 0±
0.0

0±
0.0

0±
0.0

0±
0.0

37±
7.5

58±
6.7

0±
0.0

0±
0.0

1±
2.2

0±
0.0

OG 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

98±
2.7

0±
0.0

0±
0.0

0±
0.0

STN 16±
5.4

0±
0.0

0±
0.0

0±
0.0

1±
2.2

0±
0.0

0±
0.0

45±
15.8

0±
0.0

0±
0.0

SH 0±
0.0

1±
2.2

0±
0.0

0±
0.0

4±
6.5

0±
0.0

1±
2.2

1±
2.2

91±
7.4

0±
0.0

UTSA 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

100±
0.0

In Table 4.18, the results show that the MB, MB12 and STN image classes cannot be

separated by the PNN multi-class system since their classification accuracies are of mean

values 57%, 58% and 45%, respectively. Other than EM and k-NN in Table 4.16 and 4.17,

135

PNN classifies five stego methods, F5, JPH, JS, OG and UTSA, with a 98% classification

accuracy or better; however, it fails to separate STN from Clean and MB from MB12.

4.3.4 Parzen window

Table 4.19 shows the classification accuracy from 5-fold cross validation when

performing multi-class classification using Parzen window. The feature improvement

methods and classification parameters used in Parzen window are listed in the following,

in which the combination of parameters provides higher classification accuracy.

• The data is normalized using Z-score normalization;

• Fisher’s linear discriminant is used for ranking the features with the top 36 out of

526 features selected;

• Window width σ = 0.85.

Table 4.19. Classification accuracy for 10-class Parzen window classifier.
Actual

Pr
ed

ic
te

d

 Clean F5 JPH JS MB MB12 OG STN SH UTSA

Clean 82±
9.0

0±
0.0

4±
4.1

0±
0.0

0±
0.0

0±
0.0

1±
2.2

30±
28.9

0±
0.0

0±
0.0

F5 0±
0.0

99±
2.2

1±
2.2

0±
0.0

1±
2.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

4±
4.1

JPH 0±
0.0

0±
0.0

90±
6.1

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

JS 0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

MB 0±
0.0

0±
0.0

0±
0.0

0±
0.0

57±
14.5

53±
15.2

0±
0.0

0±
0.0

1±
2.2

0±
0.0

MB12 0±
0.0

0±
0.0

0±
0.0

0±
0.0

33±
9.7

42±
10.3

0±
0.0

0±
0.0

1±
2.2

0±
0.0

OG 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

99±
2.2

0±
0.0

0±
0.0

0±
0.0

STN 18±
9.0

0±
0.0

5±
6.1

0±
0.0

1±
2.2

0±
0.0

0±
0.0

70±
28.9

2±
2.7

0±
0.0

SH 0±
0.0

0±
0.0

0±
0.0

0±
0.0

8±
10.3

5±
7.0

0±
0.0

0±
0.0

96±
4.1

0±
0.0

UTSA 0±
0.0

1±
2.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

96±
4.1

136

In Table 4.19, the results show that Parzen window method is able to classify F5, JPH, JS,

OG, SH, and UTSA with a 90% classification accuracy or better. Although it fails to

separate STN from Clean, the classification accuracy using Parzen window instead of k-

NN and PNN improves to 70%. As compared to Table 4.16, the Parzen window method

performs better on SH with a 96% classification accuracy versus 86% in EM.

4.3.5 Kernel Fisher’s Discriminant (KFD) with Multi-class Tree

Table 4.20 shows the classification accuracy from 5-fold cross validation when

performing multi-class classification using KFD. The feature improvement methods and

classification parameters used in kernel Fisher’s discriminant are listed in the following,

in which the combination of parameters provides the highest classification accuracy.

• The data is normalized using Z-score normalization;

• The feature ranking at each of the nodes is conducted using kernel feature ranking;

• The nodes correspond to Figure 4.2 where the top 50 features are used for

classification in node A (i.e., classes 1 2 3 4 5 6 7 8 9 and 10), the top 46 features

selected for node B , the top 34 features for node D, the top 24 features for node G,

the top 36 features for node E, the top 32 features selected for node H, the top 26

features selected for node I, the top 31 features selected for node C, the top 25

features selected for node F;

137

Figure 4.2. Decision tree for a 10-class classification problem with 10 leaf nodes, 9

parent nodes and a maximum depth of 6.

• The kernel used is the radial basis function with the normalizing constant Ĉ = 12

and σ = 3.

138

Table 4.20. Classification accuracy for 10-class KFD classifier.
Actual

Pr
ed

ic
te

d

 Clean F5 JPH JS MB MB12 OG STN SH UTSA

Clean 78±
5.7

0±
0.0

1±
2.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

20±
12.7

0±
0.0

0±
0.0

F5 0±
0.0

94±
6.5

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

2±
2.7

JPH 2±
2.7

0±
0.0

92±
4.4

0±
0.0

0±
0.0

0±
0.0

0±
0.0

2±
2.7

0±
0.0

0±
0.0

JS 0±
0.0

0±
0.0

0±
0.0

94±
6.5

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

MB 0±
0.0

1±
2.2

0±
0.0

0±
0.0

54±
2.2

40±
10.6

2±
2.7

0±
0.0

8±
7.5

1±
2.2

MB12 0±
0.0

0±
0.0

0±
0.0

0±
0.0

40±
3.5

59±
10.8

0±
0.0

0±
0.0

1±
2.2

0±
0.0

OG 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

98±
2.7

0±
0.0

0±
0.0

0±
0.0

STN 19±
5.4

1±
2.2

0±
0.0

5±
7.0

1±
2.2

0±
0.0

0±
0.0

78±
14.4

0±
0.0

0±
0.0

SH 1±
2.2

0±
0.0

7±
4.4

1±
2.2

5±
5.0

1±
2.2
0.0

0±
0.0

0±
0.0

90±
7.9

0±
0.0

UTSA 0±
0.0

4±
4.1

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

97±
2.7

In Table 4.20, the results show that using KFD is able to classify F5, JPH, JS, OG, SH

and UTSA with a 90% classification accuracy or better. Comparing Table 4.16 to Table

4.19, KFD might not have perfect classification accuracies on certain methods, however,

it performs better on average for all the image classes.

4.3.6 Support Vector Machines (SVM) with Multi-class Tree

Table 4.21 shows the classification accuracy from 5-fold cross validation when

performing multi-class classification using SVM.

The feature improvement methods and classification parameters used in support vector

machines with multi-class tree are listed in the following, in which the combination of

parameters provides the highest classification accuracy.

• The data is normalized using Z-score normalization;

139

• The feature ranking at each of the nodes was conducted using kernel feature

ranking;

• The nodes correspond to Figure 4.3 with the top 90 features selected for node A,

the top 44 features selected for node B, the top 46 features for node D, the top 21

features for node G, the top 63 features for node E, the top 48 features selected for

node H, the top 19 features selected for node I, the top 46 features selected for

node C, the top 22 features selected for node F;

Figure 4.3. Decision tree for a 10-class classification problem with 10 leaf nodes, 9

parent nodes and a maximum depth of 6.

• The kernel used was the radial basis function, the normalizing constant Ĉ = 6, and

σ = 3.

140

Table 4.21. Classification accuracy for 10-class SVM classifier.
Actual

Pr
ed

ic
te

d

 Clean F5 JPH JS MB MB12 OG STN SH UTSA

Clean 86±
4.1

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

17±
16.0

1±
2.2

0±
0.0

F5 1±
2.2

95±
3.5

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

JPH 0±
0.0

1±
2.2

92±
4.4

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

JS 1±
2.2

4±
2.2

6±
6.5

100±
0.0

0±
0.0

0±
0.0

2±
2.7

0±
0.0

2±
4.4

1±
2.2

MB 0±
0.0

0±
0.0

0±
0.0

0±
0.0

53±
7.5

43±
12.0

0±
0.0

0±
0.0

1±
2.2

0±
0.0

MB12 0±
0.0

0±
0.0

0±
0.0

0±
0.0

46±
8.2

56±
13.8

0±
0.0

0±
0.0

0±
0.0

0±
0.0

OG 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

97±
2.7

0±
0.0

0±
0.0

0±
0.0

STN 11±
2.2

0±
0.0

2±
2.7

0±
0.0

0±
0.0

0±
0.0

0±
0.0

82±
16.0

0±
0.0

0±
0.0

SH 0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

1±
2.2

0±
0.0

1±
2.2

96±
4.1

0±
0.0

UTSA 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

98±
2.7

In Table 4.21, the results show that the MB and MB12 image classes cannot be separated

by the SVM multi-class system since their classification accuracies are of mean values

53% and 56%, respectively. However, Table 4.21 shows that SVM with multi-class tree

performs better in general on other image classes when comparing to other classifiers

from Table 4.16 to Table 4.20. For instance, Clean has a classification accuracy of 86%

and STN has a classification accuracy of 82% which are both larger than the other five

multi-class classifiers.

4.3.7 StegoWatch

Table 4.22 shows the classification accuracy from 5-fold cross validation when

performing multi-class classification using StegoWatch. Observe from Table 4.22 that

StegoWatch clearly targets the identification of F5 embedding method above all others.

For this tool the results are returned as either H, M or L for a high, medium or low stego

detection level. If the image is clean an OK is returned indicating that the image is clean.

For the image data set being analyzed in this research StegoWatch also returns a

141

comment indicating that F5 has been identified. For this tool three classes are assigned.

In the event an H or M is returned the image is considered as being stego, if an L or OK is

returned the image is labeled as clean and if the comment indicates that F5 was identified

then F5 is the class label.

Table 4.22. Classification accuracy for StegoWatch detection system.
 Actual

Pr
ed

ic
te

d

 Clean F5 Stego

Clean 51±
6.9

0±
0.0

48±
12.4

F5 0±
0.0

100±
0.0

0±
0.0

Stego 49±
6.9

0±
0.0

52±
12.4

In Table 4.22, the results show the classification accuracies on Clean, F5 and all of the

other (Stego) image classes. Except F5, the other image classes cannot be separated by

the multi-class system since their classification accuracies are around 50%.

4.3.8 Summary of Steganalysis Multi-Class results

Table 4.23 summarizes the classification accuracies of the seven multi-class classifiers

that were examined in this chapter. Since StegoWatch is clearly specialized in identifying

F5, it will not be included in the comparison performed in the proceeding analysis of

identifying the multi-class classifier that targets specific embedding methods. However,

for completeness the StegoWatch classification accuracy is still depicted in Table 4.23.

Statistical significance comparing the best of the true multi-class classifiers (i.e., EM, k-

NN, Parzen and PNN) with the best of the tree structure multi-class classifiers (i.e., KFD

and SVM) is conducted using a t-test and shown in Table 4.24. The best classifiers

according to the defined grouping are indicated in bold in Table 4.23, which are then

used in the statistical comparison in Table 4.24. Based on overall classification accuracy

in Table 4.23, the best individual system appears to be SVM with used in a multi-class

tree structure.

142

Table 4.23. Classification accuracy for multi-class detection system.
 Clean F5 JPH JS MB MB12 OG STN SH UTSA CA

EM 83±
5.7

88±
9.0

90±
7.0

100±
0.0

51±
11.9

42±
9.0

99±
2.2

79±
18.5

86±
6.5

96±
4.1

81.4±
20.5

k-NN 78±
7.5

95±
6.1

92±
2.7

100±
0.0

54±
6.5

47±
9.7

99±
2.2

65±
11.1

86±
10.8

94±
6.5

81±
19.6

Parzen 82±
9.0

99±
2.2

90±
6.1

100±
0.0

57±
14.4

42±
10.3

99±
2.2

70±
28.9

96±
4.1

96±
4.1

83.1±
22.0

PNN 84±
5.4

99±
2.2

100±
0.0

100±
0.0

57±
9.0

58±
6.7

98±
2.7

45±
15.8

91±
7.4

100±
0.0

83.2±
21.5

KFD 78±
5.7

94±
6.5

92±
4.4

94±
6.5

54±
2.2

59±
10.8

98±
2.7

78±
14.4

90±
7.9

97±
2.7

83.4±
16.5

SVM 86±
4.1

95±
3.5

92±
4.4

100±
0.0

53±
7.5

56±
13.8

97±
2.7

82±
16.0

96±
4.1

98±
2.7

85.5±
17.9

Stego
Watch

51±
6.9

100±
0.0

52±
12.4

67.7±
10.6

Table 4.24. t-test: paired two samples for means.
t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05

Image
Class Clean F5 JPH JS MB MB12 OG STN SH UTSA

Classifier
Comparison

PNN
vs.

SVM

PNN
vs.

SVM

PNN
vs.

SVM

PNN
vs.

SVM

PNN
vs.

KFD

PNN
vs.

KFD

EM
vs.

KFD

EM
vs.

SVM

Parzen
vs.

SVM

PNN
vs.

SVM
t-Stat 0.49 2.13 4.0 0.0 0.6 0.27 1.0 0.8 0.0 1.63
Statistically
Significant No No Yes No No No No No No No

As can be seen in Table 4.24, only the JPH image class shows significant difference in

the mean between the best result from a multi-class classifier and the best result from the

multi-class tree results. The difference in the mean for the rest of the image classes are

not statistically significant. In addition, the results from the individual tables show that

the various classifiers each have individual strengths when identifying the various

embedding methods. To take advantage of the individual classifiers the next section uses

fusion to combine the seven detection systems.

143

4.4 Fusion

From Section 4.3, no advantage of single multi-class classifiers has been shown; instead

each of the multi-class classifier has individual strength. To make use of the individual

strengths of the classifiers, the three fusion techniques presented in Section 3.4 are used

and the results shown in this section. For AdaBoost and Bayesian network fusion the

class labels are fused as discrete values. For the commercial tool, StegoWatch, the results

are returned as either L, OK indicating a clean class label, or F5. The PNN fusion

however, requires that the results feed into the fusion system be posterior probabilities.

To solve this problem for the commercial tool two inputs are used, clean or F5. If the

result returned is clean, L or OK, a posterior probability of 0.9 is assigned and the F5

input is assigned a 0.01. If the result retuned is F5 a posterior probability of 0.9 is

assigned and the clean input is assigned a 0.01. For the 10-class classifiers probabilities

are assigned to each of the 10 classes but only 9 of the 10 labels from each of the

classifiers is used to train the fusion system, allowing proper training of the weights.

4.4.1 AdaBoost

The results for AdaBoost fusion are shown in Table 4.25. Fusing the seven multi-class

systems results in detecting the Clean and Steganos (STN) classes as well as the Model-

based and Model-based version 1.2 are improved.

144

Table 4.25. Classification accuracy for AdaBoost fusion.
Actual

Pr
ed

ic
te

d

 Clean F5 JPH JS MB MB12 OG STN SH UTSA

Clean 86±
4.1

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

16±
19.8

0±
0.0

0±
0.0

F5 0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

JPH 1±
2.2

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

JS 0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

MB 0±
0.0

0±
0.0

0±
0.0

0±
0.0

63±
7.5

37±
10.3

0±
0.0

0±
0.0

2±
4.4

0±
0.0

MB12 0±
0.0

0±
0.0

0±
0.0

0±
0.0

34±
6.5

61±
8.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

OG 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

STN 13±
4.4

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

84±
19.8

1±
2.2

0±
0.0

SH 0±
0.0

0±
0.0

0±
0.0

0±
0.0

3±
2.7

2±
2.7

0±
0.0

0±
0.0

97±
4.1

0±
0.0

UTSA 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

100±
0.0

With AdaBoost, the classification accuracies of MB and MB12 are 63% and 61%.

Comparing to the best individual classifier as shown in Table 4.23, AdaBoost actually

improves the classification capability of these two image classes.

4.4.2 Bayes Fusion

The results for Bayes fusion are shown in Table 4.26. Similar to AdaBoost, this fusion

method also improved the classification accuracy between the Clean and Steganos (STN)

classes as well as the Model-based and Model-based version 1.2.

145

Table 4.26. Classification accuracy for Bayes fusion.
Actual

Pr
ed

ic
te

d

 Clean F5 JPH JS MB MB12 OG STN SH UTSA

Clean 89±
2.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

13±
16.4

1±
2.2

0±
0.0

F5 0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

0±
0.0

JPH 1±
2.2

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

JS 0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

0±
0.0

MB 0±
0.0

0±
0.0

0±
0.0

0±
0.0

63±
8.3

37±
8.3

0±
0.0

0±
0.0

1±
2.2

0±
0.0

MB12 0±
0.0

0±
0.0

0±
0.0

0±
0.0

34±
10.8

63±
8.3

0±
0.0

0±
0.0

0±
0.0

0±
0.0

OG 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

STN 10±
3.5

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

86±
15.5

0±
0.0

0±
0.0

SH 0±
0.0

0±
0.0

0±
0.0

0±
0.0

3±
2.7

0±
0.0

0±
0.0

1±
2.2

96±
4.1

0±
0.0

UTSA 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

100±
0.0

As compared to the best individual classifier shown in Table 4.23, this fusion technique

actually at the very least maintains or improves every classification accuracy for all the

image classes.

4.4.3 PNN Fusion

The results for PNN fusion are shown in Table 4.27. Similar to the previous two fusion

systems, the classification accuracy between the Clean and STN classes as well as the

MB and MB12 are also improved.

146

Table 4.27. Classification accuracy for PNN fusion.
Actual

Pr
ed

ic
te

d

 Clean F5 JPH JS MB MB12 OG STN SH UTSA

Clean 88±
2.7

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

15±
17.6

1±
2.2

0±
0.0

F5 0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

JPH 1±
2.2

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

1±
2.2

0±
0.0

0±
0.0

JS 0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

3±
4.4

0±
0.0

MB 0±
0.0

0±
0.0

0±
0.0

0±
0.0

56±
13.8

34±
10.8

0±
0.0

0±
0.0

0±
0.0

0±
0.0

MB12 0±
0.0

0±
0.0

0±
0.0

0±
0.0

40±
14.5

63±
8.3

0±
0.0

0±
0.0

0±
0.0

0±
0.0

OG 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

100±
0.0

0±
0.0

0±
0.0

0±
0.0

STN 11±
2.2

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

84±
19.8

0±
0.0

0±
0.0

SH 0±
0.0

0±
0.0

0±
0.0

0±
0.0

4±
2.2

3±
2.7

0±
0.0

0±
0.0

96±
4.1

0±
0.0

UTSA 0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

0±
0.0

100±
0.0

With PNN fusion, the classification accuracies of Clean, F5, MB, MB12 and STN image

classes are improved as compared to the best individual classifier shown in Table 4.23.

4.4.4 Summary of Multi-class Steganalysis Fusion Techniques

Table 4.28 shows the classification accuracy of the fusion methods and the best

individual classifier, i.e., SVM with multi-class tree. It is chosen as the best individual

classifier purely based on the overall classification accuracy of 85.5% (Table 4.23). Table

4.28 shows that by using any fusion technique classification accuracy improves over the

best individual classifier. It shows that each of the fusion methods has an equal or higher

classification accuracy over any of the best individual classifiers results.

147

Table 4.28. Classification accuracy comparisons between the best individual results and
the three fusion methods.

 Clean F5 JPH JS MB MB12 OG STN SH UTSA CA
SVM 86±

4.1
95±
3.5

92±
4.4

100±
0.0

53±
7.5

56±
13.8

97±
2.7

82±
16.0

96±
4.1

98±
2.7

85.5±
17.3

AdaBoost
Fusion

86±
4.1

100±
0.0

100±
0.0

100±
0.0

63±
7.5

61±
8.2

100±
0.0

84±
19.8

96±
4.1

100±
0.0

89±
15.3

Bayes
Fusion

89±
2.2

100±
0.0

100±
0.0

100±
0.0

63±
7.5

63±
8.3

100±
0.0

86±
15.5

96±
4.1

100±
0.0

89.7±
15.3

PNN
Fusion

89±
2.2

100±
0.0

100±
0.0

100±
0.0

65±
3.5

63±
8.3

100±
0.0

86±
15.5

96±
4.1

100±
0.0

89.9±
14.9

The three fusion techniques are equally valid choices for combining the individual multi-

class classifier from Section 4.3. In Table 4.29 the t-test is performed between the PNN

fusion (highest overall CA in the fusion methods examined) and the SVM multi-class

classifier (highest overall CA of the individual multi-class classifier) to determine

whether the difference in the means between these two methods is statistically significant.

As noted in Table 4.29 the two methods show statistical differences for the F5, JPH, MB,

and STN image classes.

 Table 4.29. t-test: paired two samples for means of classification accuracy between PNN
fusion and SVM.

t-Critical Two-Tail; t4, 0.975 = 2.776, n1 = n2 = 5 (corresponding to 5-fold), α = 0.05
Image
Class Clean F5 JPH JS MB MB12 OG STN SH UTSA

t-Stat 1.5 3.16 4 0.0 2.9 1.20 2.44 4 0.0 1.63
Statistically
Significant No Yes Yes No Yes No No Yes No No

In this subsection it was shown that the fusion techniques have equal or greater

classification accuracy over any of the individual classifiers. In addition to the statistical

significance for certain image classes shown in Table 4.29, the fusion methods also show

an increase in classification accuracy over any of the individual detection systems.

148

4.5 Summary

In this chapter, the DCT decomposition feature generation, kernel feature ranking,

decision tree for multi-class classification and the fusion techniques have shown

improvements in classification accuracy when determining the stego algorithm used to

create a stego image. Results comparing the feature generation methods described in

Section 3.2 show that the new features are able to distinguish between Steganos and the

other classes while the wavelet feature generation method (Lyu and Farid, 2002) and

DCT feature generation (Pevny and Fridrich, 2006) have shown difficulty in identifying

Steganos. It has also been shown that by combining all of the feature generation methods,

detection improves. Additionally, by performing feature ranking, detection results for the

SVM classifier are improved. The third area of improvement is the development of a

multi-class tree that is used with two-class KFD and SVM classifiers. The tree in this

case is expanded by using a distance measure in the kernel space. While the classification

tree shows promise, the results can additionally be improved through the use of a fusion

technique. The fusion techniques use the strengths of each individual multi-class

detection systems to better predict the embedding method. The t-test was used in this

chapter to determine if the methods used to improve the classification of individual

steganography methods are statistically significant. While no individual system showed

to be statistically significant over any of the others, it is important to note that the real

utility of the methods in this research lies in using each and every available detection

system to improve the identification of steganography methods.

149

V. Conclusion and Recommendations

This research demonstrated a steganalysis classification system that identifies the

steganalysis embedding method in a given JPEG. The system includes feature

preprocessing, feature extraction, feature ranking, classification and multi-class

classification. The methodology, analyses and experimental results with system

validation have been described and demonstrated in Chapters 3 and 4. The results show

the statistical difference of the proposed classification system which is essential for such

a system. This chapter summarizes the research conducted and also provides the

advantage and disadvantage of this steganalysis classification system. Further research

can be applied not only based on the constraints and limitations when developing the

system but by its application to other areas.

5.1 Application of Results

This research proposes a novel multi-class detection system applied to the problem of

steganalysis. The complete system is shown in Figure 5.1. With the input including the

clean and stego image sets using the embedding methods either F5, JP Hide, JSteg,

Model-base, Model-based Version 1.2, OutGuess, Steganos, StegHide or UTSA, features

are generated from each image and each feature set is assigned a class label identifying

the embedding method used. Three components, Multi-class Detection for EM/k-

NN/Parzen/PNN, Multi-class Detection for KFD/SVM, and Commercial Detection

Systems are integrated as an 8 multi-class system. The components analyze the raw

features and their results are fused in order to assign a final class label.

150

Figure 5.17. Detection system.

The multiclass fusion system developed in this dissertation provides the steganalyst the

ability to use all available tools from both the research community and the commercial

industry to be combined in one detection system. For certain law enforcement agencies

that use detection methods not available to outside agencies (i.e., ILook Investigator,

Detica’s Inforenz Forager, SecureStego (AFRL) and WetStone’s Stego Suite with added

Input Image Data Set

Clean/Stego

Feature Generation

Feature
Ranking

Classifier Fusion

Feature Improvement
Pre-processing/Extraction/Ranking

Multi-class
Tree

Feature
Standardization

Classification

Classification

Class Labels
EM/k-NN/Parzen/PNN

Class Labels
KFD/SVM

St
eg

o
Su

ite
 (S

S)

Multi-class
Detection
for EM/k-NN/
Parzen/PNN

Multi-class
Detection

for KFD/SVM

Class Labels
SASS/SSM

Commercial
Detection

System

Label Assignment
Clean, F5, JP Hide, JSteg, Model-based, Model-based 1.2, OutGuess, Steganos,

StegHide, UTSA

151

applications) the fusion method provides a means to incorporate the class labels of any

tools necessary for identifying stego methods.

As shown in Section 4.2, the classification accuracy for each feature generation method,

Wavelet features, DCT features, and DCT decomposition features, with feature ranking is

increased. Using SVM-kernel feature ranking, the wavelet feature generation method has

an average increase of 7% in classification accuracy when feature ranking is not used.

The DCT features show an increase in classification accuracy on Clean vs. MB and Clean

vs. STN with 0.5% and 1.6% respectively when using SVM-kernel feature ranking. The

DCT decomposition features have an average increase of 2.5% classification accuracy in

comparison to not using feature ranking. Between the three feature generation methods

shown in Table 4.14, while the DCT features are able to classify most of the stego

methods accurately, the proposed DCT decomposition features has an increase in

classification accuracy of 10% on Steganos (STN) over the DCT features. This allows the

combination of features with feature ranking to separate the Clean vs. all the Stego image

classes as shown in Table 4.14 with perfect classification accuracy. By creating a multi-

class classifier using the decision tree in Section 3.3 the proposed SVM with tree

structure has an increase of classification accuracy of 2.3% over PNN as shown in Table

4.23. Furthermore, with the use of fusion techniques, the overall classification accuracy

of the best individual classifier increases from 85.5% to 89% (see Table 4.28). AdaBoost,

Bayes, and PNN fusion obtain the classification accuracy of 89%, 89.7% and 89.9%,

respectively.

5.2 Recommendations for Future Work

The need to extract the hidden information is necessary for law enforcement to build a

criminal case if it is to hold up in court. This problem of extraction leads to an

intermediate step of identifying the embedding method used to create the stego file.

Another problem exist for the steganalyst in which several tools are available to detect

whether an image is clean or stego. The multi-class classification system developed needs

152

to be expanded to identify more steganography algorithms. This expansion includes the

ability to identify embedding techniques other than DCT coefficients, such as header

analysis, and spatial embedding methods. Additionally, the techniques should be

extended to classify JPEG images with different image sizes, quality factors, and camera

types. Also, the difficulties are currently not well understood when it comes to images

taken from entirely different scenes or computer generated.

In header analysis, stego images created by methods such as F5 (Westfeld, 2001; 2003)

and Invisible Secrets (2008) manipulate the header of an image in different ways. By

analyzing the header of an image various embedding methods used to manipulate in

headers can be identified. In both StegAlyzerSS and StegoWatch the default header for

F5 was identified, however, for Invisible Secretes neither of these detectors is capable of

identifying this method. The work by Pevny and Fridrich (2006) analyze various image

sizes, quality factors and camera types and are supported by the Air Force Research

Laboratory. Their research of these categories can be used in conjunction with the

presented detection system to improve the identification of the embedding methods used.

Another area of improving stego method identification is to separate images into different

scenes, e.g., images of an aircraft with blue sky should not be in the same data set as

images of an individual smiling. By separating images into the various categories the

problems encountered in Section 4.4 with outliers can be avoided. The number of varying

scenes is a research topic that has been extensively studied can be incorporated into the

work provided in this document.

5.3 Conclusion

This dissertation proposes a novel multi-class classification system on steganalysis. This

research of developing the steganalysis classification system has contribution in four

advancements: feature generation, feature ranking, multi-class for kernel Fisher’s

discriminant as well as support vector machines and fusion of detection systems. First,

153

the new features are generated from the frequency bands and directions of the Discrete

Cosine Transform (DCT) coefficients of JPEG images. The second improvement is a new

feature ranking method. From the original input feature set, it selects a subset of features

specifically designed for the kernel Fisher’s discriminant (KFD) and the support vector

machines (SVM). The third improvement is a multi-class classification tree designed for

the KFD and SVM classifiers. The final contribution of this steganalysis classification

system is a multi-class classifier fusion with classifier selection and fusion. The complete

system performance shows an increase in classification accuracy of 10% as well as being

statistically different from existing detection techniques. In addition, this system provides

a solution for identifying steganographic fingerprints as well as the ability to include

future multi-class classification tools.

154

Appendix A

Table A1. Number of features used from each of the feature generation method in feature
combination (Table 4.15 Detail for Clean vs. F5, Clean vs. JPH and Clean vs. JS).
 Clean vs. F5 Clean vs. JPH Clean vs. JS

Method
↓

Total No. of
Features → 11 18 5

Wavelets

No. of Features 1 3 0
(Number of
Features)

Description of
Feature:
Statistic

Calculated,
Orientation,

Subband Scale
(level),
either

Wavelet
Coefficients or

Log Error

(1) Variance,
Horizontal, 1, Log
Error

(1) Mean, Diagonal, 1,
Log Error
(1) Variance,
Horizontal, 1, Log
Error
(1) Kurtosis, Vertical,
1, Log Error

(0)

DCT

No. of Features 5 12 4
(Number of
Features)

Description of
Feature:

either
Global Histogram

AC Histogram
Dual Histogram

Variation
Blockiness

Co-occurance
Markov

(1) AC Histogram
(3) Dual Histogram
(1) Markov

(3) AC Histogram
(3) Dual Histogram
(5) Co- occurance
(1) Markov

(3) Co- occurance
(1) Markov

DCT
Decomp

No. of Features 5 3 1
(Number of
Features)

Description of
Feature:
Statistic

Calculated,
Orientation,
Frequency,

either
Regression

Mean Difference
Avg. Neighboring

Shifted Right
Shifted Down

Shifted Diagonal

(1) Variance,
Diagonal, Low,
Regression
(1) Variance,
Horizontal, Low, Avg.
Neighboring
(1) Variance,
Horizontal, Low,
Shifted Diagonal
(1) Variance, Vertical,
Low, Shifted Diagonal
(1) Entropy, Vertical,
Low, Shifted Diagonal

(1) Variance,
Diagonal, Low,
Regression
(1) Entropy,
Horizontal, Low, Avg.
Neighboring
(1) Variance, Vertical,
Low, Shifted
Diagonal

(1) Variance,
Diagonal, Medium,
Shifted Diagonal

155

Table A2. Number of features used from each of the feature generation method in feature
combination (Table 4.15 Detail for Clean vs. MB, Clean vs. MB1.2 and Clean vs. OG).

 Clean vs. MB Clean vs. MB1.2 Clean vs. OG
Method

↓
Total No. of
Features → 6 10 5

Wavelets

No. of Features 0 0 0
(Number of
Features)

Description of
Feature:
Statistic

Calculated,
Orientation,

Subband Scale
(level),
either

Wavelet
Coefficients or

Log Error

(0) (0) (0)

DCT

No. of Features 5 5 4
(Number of
Features)

Description of
Feature:
either

Global Histogram
AC Histogram

Dual Histogram
Variation

Blockiness
Co-occurance

Markov

(4) Co- occurance
(1) Markov

(2) Co- occurance
(3) Markov

(1) AC Histogram
(3) Markov

DCT
Decomp

No. of Features 1 5 1
(Number of
Features)

Description of
Feature:
Statistic

Calculated,
Orientation,
Frequency,

either
Regression

Mean Difference
Avg. Neighboring

Shifted Right
Shifted Down

Shifted Diagonal

(1) Variance,
Diagonal, Low,
Regression

(1) Variance, Diagonal,
Low, Regression
(1) Variance,
Horizontal, Low, Avg.
Neighboring
(1) Variance, Diagonal,
Low, Mean Difference
(1) Variance, Vertical,
Low, Shifted Diagonal
(1) Entropy, Vertical,
Low, Shifted Diagonal

(1) Mean, Vertical,
Medium,
Regression

156

Table A3. Number of features used from each of the feature generation method in feature
combination (Table 4.15 Detail for Clean vs. STN, Clean vs. SH and Clean vs. UTSA).

 Clean vs. STN Clean vs. SH Clean vs.
UTSA

Method
↓

Total No. of
Features → 15 7 5

Wavelets

No. of Features 2 0 0
(Number of
Features)

Description of
Feature:
Statistic

Calculated,
Orientation,

Subband Scale
(level),
either

Wavelet
Coefficients or Log

Error

(1) Variance,
horizontal subband at scale
1,
log error
(1) Mean, diagonal
subband at scale 1

(0) (0)

DCT

No. of Features 7 5 5
(Number of
Features)

Description of
Feature:
either

Global Histogram
AC Histogram

Dual Histogram
Variation

Blockiness
Co-occurance

Markov

(1) Global histogram
(1) AC histogram
(3) Dual histogram
(2) Co- occurance

(4) Co-occurance
(1) Markov

 (4) Co-
occurance
(1) Markov

DCT
Decomp

No. of Features 6 2 0
(Number of
Features)

Description of
Feature:
Statistic

Calculated,
Orientation,
Frequency,

either
Regression

Mean Difference
Avg. Neighboring

Shifted Right
Shifted Down

Shifted Diagonal

(1) Variance, Diagonal,
Low, Regression,
(1) Variance, Horizontal,
Low, Average
Neighboring
(1) Variance, Horizontal,
Low, Shifted Diagonal
(1) Variance, Vertical,
Low, Shifted Diagonal
 (1) Variance, Diagonal,
Low, Mean Difference
(1) Entropy, Vertical, Low,
Shifted Diagonal

(1) Variance, Horizontal,
Low, Avg. Neighboring
 (1) Variance, Vertical,
Low, Shifted Diagonal

(0)

 157

Bibliography

Abdi, H. and Molin, P. (2007). Lilliefors test of normality. Encyclopedia of Measurement
and Statistics, N.J. Salkind (Ed.), pp. 540-544, Thousand Oaks, CA.

Addison, P. S. (2002). The Illustrated Wavelet Transform Handbook, Introductory
Theory and Applications in Science, Engineering, Medicine and Finance. Bristol BS1
6Be, UK: IOP Publishing Ltd.

Agaian, S., Schneider, E. and Cherukuri, R. (2006). Transform-domain Steganographic
Algorithms Exploring Pixel Intensity Variations. IEEE Signal Processing Society,
2006 International Conference on Multimedia & Expo, Toronto, Canada, pp. 1-4.

Astrowsky, B.H. (2000). STEGANOGRAPHY: Hidden Images, A New Challenge in the
Fight Against Child Porn. UPDATE, Volume 13, Number 2, pp. 1-4, Retrieved June
3, 2008, http://www.antichildporn.org/steganog.html.

Backbone Security. (2008). Steganography Analysis and Research Center. Retrieved June
3, 2008, http://www.sarc-wv.com/safdb.aspx.

Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data 3rd Edition. Chichester,
England: John Wiley & Sons.

Bauer K. W., Alsing, S. G., and Greene, K. A. (2000). Feature screening using signal-to-
noise ratios. In Neurocomputing, Volume 31, pp. 29-44.

Belue, L. M. (1992). Multilayer Perceptrons for Classification. University published
master’s thesis, AFIT/GOR/ENS/92M-02, Air Force Institute of Technology, Wright-
Patterson AFB, OH.

Belue, L. M. and Bauer, K. W. Jr., (1995). Determining input features for multilayered
perceptrons. Neurocomputing, Volume 7, pp. 111-121.

Bhattacharyya, A., (1943). On a measure of divergence between two statistical
populations defined by their probability distributions. Bulletin of the Calcutta
Mathematical Society, Number 35, pp. 99-110.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. New York, NY: Oxford
University Press Inc.

 158

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY:
Springer.

Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore
del Professore Salvatore Ortu Carboni, Rome, pp. 13-60.

Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilità.
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di
Firenze, Volume 8, pp. 3-62.

Brown, W. and Shepherd, B. J. (1995). Graphics File Formats: Reference and Guide.
Greenwich, CT: Manning Publications.

Burgers, C., (1998). A tutorial on Support Vector Machines for Pattern Recognition,
Data Mining and Knowledge Discovery. Volume 2, Number 2, pp. 121-167.

Burns, J. (2006). Image Formats. Retrieved March 25, 2006,
http://www.htmlgoodies.com/tutorials/web_graphics/article.php/3479931.

Celeux, G. and G. Govaert, (1995). Gaussian Parsimonious Clustering Models. Pattern
Recognition, Volume 28, pp. 781-793.

Chandramouli, R. (2002). Mathematical approach to steganalysis. Proceedings of the
SPIE Security and Watermarking of Multimedia Contents IV, Volume 4675.
International Society for Optical Engineering, San Jose, California, pp. 14-25.

Chang, C.-C., and Lin, C.-J. (2001). LIBSVM: a library for support vector machines.
Retrieved February 2006, http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cover, T. and Hart, P. E. (1967). Nearest Neighbor Pattern Classification. IEEE
Transactions on Information Theory. Volume 13, pp. 21-27.

Cristianini, N., and Shawe-Taylor J., (2000). An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge CB2 2RU, UK: Cambridge
University Press.

Cristianini, N., and Shawe-Taylor J., (2004). Kernel Methods for Pattern Analysis.
Cambridge CB2 2RU, UK: Cambridge University Press.

Crammer, K. and Singer, Y. (2000). On the Learnability and Design of Output Codes for
Multiclass Problems. Computational Learning Theory, pp. 35-46.

 159

Crammer, K. and Singer, Y. (2001). Ultraconservative Online Algorithms for Multiclass
Problems. 14th Annual Conference on Computational Learning Theory, {COLT}
2001 and 5th European Conference on Computational Learning Theory, Amsterdam,
The Netherlands, Volume 2111, pp. 99-115.

Davis, C.H. (1857). Theory of the Motion of the Heavenly Bodies Moving about the Sun
in Conic Sections, A Translation of Gauss’s “Theoria Motus.” With an Appendix.
Boston, MA: Little, Brown and Company. (Original work published 1809).

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society B,
Volume 39, Number 1, pp.1–22.

Dillon, W. R. and Goldstein, M. (1984). Multivariate Analysis Method and Applications.
New York, NY: John Wiley & Sons, Inc.

Draper, N. R. and Smith, H. (1998). Applied Regression Analysis Third Edition. New
York, NY: Wiley Series in Probability and Statistics, John Wiley & Sons, Inc.

Duda, R. and Hart, P. (1973). Pattern Classification and Scene Analysis. New York, NY:
Wiley-Interscience Publications.

Duda, R.O., Hart, P.E. and Stork, D.G. (2001). Pattern Classification (2nd. Ed.). New
York, NY: John Wiley & Sons.

Duin, R. P. W. (2002). The Combining Classifier: to Train or Not to Train. Editors R.
Kasturi, D. Laurendeau, C. Suen (eds.), ICPR16, Proceedings 16th International
Conference on Pattern Recognition, Volume 2, IEEE Computer Society Press, Los
Alamitos, pp. 765-770.

Duin, R. P. W. and Tax, D. M. J. (2000). Experiments with Classifier Combining Rules.
in: J. Kittler, F. Roli (eds.), Lecture Notes in Computer Science Multiple Classifier
Systems (Proc. First International Workshop, MCS 2000, Cagliari, Italy, Volume
1857, Springer, Berlin, pp. 16-29.

Eibl, G. and Pfeiffer, K-P. (2005). Multiclass Boosting for Weak Classifiers. Journal of
Machine Learning Research Volume 6, pp. 189–210.

Elysium Ltd. (2004). Home of the JPEG committee. Retrieved February 20, 2005,
http://www.JPEG.org/.

 160

Farid, H. (2002). Detecting Hidden Messages Using Higher-Order Statistical Models.
IEEE International Conference on Images Processing, Volume 2, Rochester, NY, pp.
905-908.

Fisher, R. A., (1936). The use of Multiple Measurements in Taxonomic Problems.
Proceedings of Annals of Eugenics, Number 7, pp. 179-188.

Fisher, R. A. (1943) A Theoretical Distribution for the Apparent Abundance of Different
Species. Journal of Animal Ecology, Volume 12, pp. 54-58.

Franc, V. and Hlavac, V. (2007). Statistical Pattern Recognition Toolbox. Retrieved
October 30, 2007, http://cmp.felk.cvut.cz/cmp/software/ stprtool/index.html.

Freund, Y. and Schapire, R. E. (1995). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
Number 55, pp. 23-37.

Freund, Y. and Schapire, R. E. (1999). A Short Introduction to Boosting. Journal of
Japanese Society for Artificial Intelligence, Volume 14, Issue 5, pp 771-780.

Friedberg, S. H., Insel, A. J. and Spence, L. E. (1989). Linear Algebra Second Edition.
Englewood Cliffs, NJ: Prentice Hall.

Fridrich, J. (2004). Feature-Based Steganalysis for JPEG Images and its Implications for
Future Design of Steganographic Schemes. LNCS 6th Information Hiding Workshop,
Editor Fridrich, J., Volume 3200, Springer-Verlag, pp. 67-81.

Friess, T-T., Cristianini, N. and Campbell, C., (1998). The Kernel-Adatron algorithm: a
fast and simple learning procedure for support vector machines. Proceedings On
Machine Learning 15th International Conference, pp. 188-196.

Fu, D., Shi, Y. Q., Zou, D. and Xuan, G., (2006). JPEG Steganalysis Using Empirical
Transition Matrix in Block DCT Domain. 2006 IEEE 8th Workshop on Multimedia
Signal Processing, Victoria, BC, Canada, pp.310-313.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition Second Edition. San
Diego, CA: Academic Press, Inc.

Gauss, C. F. (1809). Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem
Ambientum. Perthes and Besser, Hamburg.

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss�

 161

Goebel, K. and Yan, W. (2004). Choosing Classifiers for Decision Fusion. The 7th
International Conference on Information Fusion, Stockholm, Sweden.

Gonzalez, R. C. and Woods R. (1992). Digital Image Processing. Reading, MA:
Addison-Wesley.

Gonzalez, R. C. and Woods R. (2002). Digital Image Processing, 2nd Edition. Upper
Saddle River, NJ: Prentice Hall.

Gonzalez, R. C. and Woods R. (2007). Digital Image Processing, 3rd Edition. Upper
Saddle River, NJ: Prentice Hall.

Gonzalez, R. C., Woods, R. E. & Eddins, S. L. (2004). Digital Image Processing Using
Matlab. Upper Saddle River, NJ: Prentice Hall.

Guyon, I., (2007). Feature Selection with CLOP. Retrieved October 28, 2007
http://clopinet.com/isabelle/Projects/ETH/Feature_Selection_w_CLOP.html.

Guyon, I., Gunn, S., Nikravesh, M. and Zadeh, L. A. (Eds.). (2006). Feature Extraction,
Foundations and Applications. New York, NY: Springer.

Guyon, I., Weston, J., Barnhill, S. and Vapnik, V., (2002). Gene Selection for Cancer
Classification Using Support Vector Machines. Machine Learning, Volume 46, pp.
389-422.

Hetzl, S., (2003). StegHide. Retrieved July 20, 2005 http://steghide.sourceforge.net/.

Higgins, K. J. (2007). Research Shows Image-Based Treat on the Rise. Dark Reading,
Retrieved October 25, 2007,
http://www.darkreading.com/document.asp?doc_id=136702&f_src=darkreading.

Hoeting, J., Madigan, D., Raftery, A. and Volinsky, C. (1999). Statistical Science,
Volume 14, Number 4, pp. 382-401.

Hogg, R. V. and Tanis, E. A. (1993). Probability and Statistical Inference. New York,
NY: MacMillan Publishing Company.

Hotelling, H., (1933). Analysis of a complex of statistical variables into principal
components, Journal of Educational Psychology, Number 24, pp. 417–441.

http://steghide.sourceforge.net/�

 162

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2006). A practical guide to support vector
classification. Department of Computer Science and Information Engineering
National Taiwan, Retrieved March 15, 2006
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

Hsu, C.-W., Chang, C.-C. and Lin, C.-J. (2002). A comparison on methods for multi-
class support vector machines. IEEE Transactions on Neural Networks, Volume 13,
pp. 415-425.

Hsu, C.-W. and Lin, C.-J. (2002). A Simple Decomposition Method for Support Vector
Machines. Machine Learning, Volume, 46 pp. 291-314.

Independent JPEG Group (1998). Independent JPEG Group. Retrieved February 20,
2005, http://www.ijg.org/.

Jaakola, T. S. and Haussler, D. (1998). Exploring Generative Models in Discriminative
Classifiers. Advances in Neural Information Processing Systems. Kearns, M.S., Soll,
S. A. and Cohn, D. A. (Eds.), Volume 11, Cambridge, MA: MIT Press.

Jackson, J. T. (2003). Targeting Covert Messages: A Unique Approach for Detecting
Novel Steganography. University published master’s thesis, AFIT/GCE/ENG/03-02,
Air Force Institute of Technology, Wright-Patterson AFB OH.

Jaeger, S. (2004). Informational Classifier Fusion. Proceedings of the 17th International
Conference on Pattern Recognition, ICPR 2004, Volume 1, pp. 216-219.

Jain, A. K., Duin, R. P. W. and Mao, J., (2000). Statistical Pattern Recognition: A
Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume
22, Number 1, pp. 4-37.

Joachims, T. (1998). Making Large-Scale Support Vector Machine Learning Practical.
Advances in Kernel Methods: Support Vector Machines, Scholkopf, B, Burges, C.
and Smola, A. (Eds.), Cambridge, MA: MIT Press.

Joachims, T. (2007). SVMlight Support Vector Machines. Retrieved October 30, 2007
http://svmlight.joachims.org/.

Johnson, N. F. and Jajodia, S. (1998A). Exploring steganography: Seeing the unseen.
IEEE Computer, Volume 31, Number 2, pp. 26-34.

 163

Johnson, N. F. and Jajodia, S. (1998B). Steganalysis of images created using current
steganography software. Proceedings of the Second International Workshop on
Information Hiding (IH '98), Lecture Notes in Computer Science, Volume 1525, pp.
273-289, Berlin, Germany: Springer-Verlag.

JPEG (1994). Information technology - Digital compression and coding of continuous-
tone still images: Requirements and guidelines, ISE/IEC IS 10918-1, American
National Standards Institute, Retrieved June 15, 2008
http://www.w3.org/Graphics/JPEG/itu-t81.pdf.

Kahn, D., (1996). The History of Steganography. Lecture Notes in Computer Science,
First International Workshop in Information Hiding Proceedings, pp. 1-5,
Cambridge, U.K: Springer Press.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis.
Educational and Psychological Measurement, Volume 20, Number 1, pp. 141-151.

Katzenbeisser, S. and Petitcolas, F. A. P. (Eds.). (2000). Information Hiding Techniques
for Steganography and Digital Watermarking. Norwood, MA: Artech House, Inc.

Kelley, J., (2001). Terror Groups Hide Behind Web Encryption, USA Today, February 5,
2001.

Kharrazi, M., Sencar, H. T. and Memon, N. (2005). Benchmarking steganographic and
steganalysis techniques. Security, Steganography, and Watermarking of Multimedia
Contents VII, Delp, E. J., III and Wong, P. W. (Eds.), Proceedings of the SPIE,
Volume 5681, pp. 252-263.

Kharrazi, M., Sencar, H. T. and Memon, N. (2006). Performance study of common image
steganography and steganalysis techniques. Journal of Electronic Imaging, Volume
15, Issue 4, pp. 041104 1-16.

Kessler, G. C. (2004). An Overview of Steganography for the Computer Forensics
Examiner. Forensic Science Communications, Volume 6, Number 3, pp. 1-29.

Kittler, J., (2002). A Framework for Classifier Fusion: Is It Still Needed?. Lecture Notes
In Computer Science, Proceedings of the Joint IAPR International Workshops on
Advances in Pattern Recognition, Volume 1876, pp. 45 – 56, London, UK: Springer-
Verlag.

 164

Kittler, J., Hatef, M., Duin, R. P. W. and Matas, J., (1998). On Combining Classifiers.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 20,
Number 3.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and
model selection. Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, Volume 2, Number 12, pp. 1137–1143.

Kohavi, R. and Provost F. (1998). Glossary of Terms. Editorial for the Special Issue on
Applications of Machine Learning and the Knowledge Discovery Process, Volume
30, Number 2/3.

Kuncheva, L. I. (2004). Combining Pattern Classifiers Methods and Algorithms. New
York, NY: John Wiley & Sons, Inc.

Kuncheva, L. I., Bezdek J. C., and Duin R. P.W. (2001). Decision templates for multiple
classifier fusion: an experimental comparison. Pattern Recognition, Volume 34, pp.
299-314.

Latham, A. (1999). Steganography. Retrieved July 20, 2005
http://linux01.gwdg.de/~alatham/stego.html.

Leap, N. J., Clemans, P. P., Bauer, K. B. Jr. and Oxley, M. E. (2004). An Investigation of
the Effects of Correlation and Autocorrelation on Classifier Fusion and Optimal
Classifier Ensembles. Proceedings of the Artificial Neural Networks in Engineering
Conference (ANNIE 2004), Dagli, C., Enke, D., Buczak, A., Embrechtz, M.
andErsoy, O. (Eds.), pp. 149-154.

Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des
comètes, A Paris, Chez Firmin DIDOT, Libraire pour les Mathématiques, la Marine,
l’Architecture, et les Éditions stéréotypes, rue de Thionville, no 116.

Lie, W.-N and Lin, G.-S. (2005). A feature-based classification technique for blind image
steganalysis. IEEE Transactions on Multimedia, Volume7, Number 6, pp. 1007-1020.

Lilliefors, H. (1967). On the Kolmogorov-Smirnov test for normality with mean and
variance unknown. Journal of the American Statistical Association, Volume 62, pp.
399-402.

http://en.wikipedia.org/wiki/Adrien-Marie_Legendre�

 165

Lin, H.-T., Lin, C.-J. and Weng, R. C. (2003). A note on Platt’s probabilistic outputs for
support vector machines. Technical report, Department of Computer Science,
National Taiwan University, Retrieved March 2006,
http://www.csie.ntu.edu.tw/_cjlin/papers/plattprob.ps.

Littlebury, I. (1737a). The History of Herodotus, Translated from Greek, Volume I, The
Third Edition, London.

Littlebury, I. (1737b). The History of Herodotus, Translated from Greek, Volume II, The
Third Edition, London.

Liu, Y. and Zheng, Y. F. (2005). One-Against-All Multi-Class SVM Classification Using
Reliable Measures. Retrieved November 2006,
http://www.stat.umn.edu/~xshen/paper/One-Against-All-Zheng.pdf.

Looney, C. G. (1997). Pattern Recognition Using Neural Networks. New York, NY:
Oxford University Press.

Louw, N. and Steel, S. J. (2006). Variable Selection in Kernel Fisher Discriminant
Analysis by Means of Recursive Feature Elimination, Computational Statistics and
Data Analysis, Volume 51, pp. 2043-2055.

Lyu, S. and Farid, H. (2002). Detecting Hidden Messages Using Higher-Order Statistical
Models. International Conference on Image Processing (ICIP), Rochester, NY.

Lyu, S. and Farid, H. (2004). Steganalysis Using Color Wavelet Statistics and One-Class
Support Vector Machines. SPIE Symposium on Electronic Imaging, San Jose, CA.

Mak, G. (2000). The Implementation of Support Vector Machines Using the Sequential
Minimal Optimization Algorithm, University published master’s thesis, Retrieved
October 28, 2007, http://moncs.cs.mcgill.ca/MSDL/10_people.html.

Martinez W. L. and Martinez, A. R. (2002). Computational Statistics Handbook with
MATLAB, Boca Raton, FL: Chapman & Hall/CRC.

MATLAB (2004). Image Processing Toolbox User’s Guide, Version 4. Natick, MA: The
Mathworks, Inc.

MATLAB (2007). Optimization Toolbox, Users Guide, Version, 3.1.1. Natick, MA: The
Mathworks, Inc.

 166

Middelmann, W., Ebert, A. and Thoennessen, U. (2006). Assessment of a Novel Decision
and Reject Method for Multi-Class Problems in a Target Classification Framework
for SAR Scenarios. Algorithms for Synthetic Aperture Radar Imagery XIII, Zelnio, E.
G. and Garber, F. D. (Eds.), Proceedings of the SPIE, Volume 6237, Number 0P, pp.
1-9.

Mika, S., G. Ratsch, G., Weston, J., Scholkpf, B. and Muller, K. (1999). Fisher
Discriminant Analysis with Kernels. Neural Networks for Signal Processing IX,
Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 41-48.

Mitchell, T. M. (1997). Machine Learning. Boston, MA: McGraw-Hill.

Murphy, K., (2001). The Bayes Net Toolbox for Matlab. Computing Science and
Statistics, Volume 33, pp. 1-20.

Murry, J. D. and vanRyper, W. (1994). Encyclopedia of Graphics File Formats.
Sebastopol, CA: O’Reilly & Associates, Inc.

Neter, J., Kutner, M. H., Wasserman, W. and Nachtsheim, C. J. (1996). Applied Linear
Statistical Models, Fourth Edition. Boston, MA: The McGraw-Hill Companies, Inc.

The Oxford English dictionary: being a corrected re-issue. (1933). Oxford: Clarendon
Press.

Parzen, E. (1962). On the Estimation of a Probability Density Function and Mode.
Annals of Mathematical Statistics. Volume 33 pp. 1065-1076.

Petitcolas, F., Anderson, R. and Kuhn, M. (1999). Information hiding—A survey.
Proceedings IEEE, Volume 87, pp. 1062–1078.

Pevny, T. and Fridrich, J. (2006). Determining the Stego Algorithm for JPEG Images.
Special Issue of IEE Proceedings - Information Security, Volume 153, Number 3, pp.
75-139.

Pevny, T. and Fridrich, J., (2007). Merging Markov and DCT Features for Multi-Class
JPEG Steganalysis. Security, Steganography, and Watermarking of Multimedia
Contents IX, Delp, E. J., III; Wong, P. W. (Eds.), Proceedings of the SPIE, Volume
6505, pp. 650503 1-13.

Platt, J. (2000). Probabilistic outputs for support vector machines and comparison to
regularized likelihood methods, Advances in Large Margin Classifiers, Smola, A.,
Bartlett, P., Scholkopf, B. and Schuurmans, D. (Eds.), Cambridge, MA: MIT Press.

 167

Platt, J. C., Cristianini, N. and Shawe-Taylor, J. (2000). Large Margin DAGs for
Multiclass Classification. Advances in Neural Information Processing Systems 12,
Solla, S.A., Leen, T.K. and Mueller, K.-R. (Eds.), pp. 547-553.

Provos, N. and Honeyman, P. (2003) Hide and Seek: An Introduction to Steganography.
IEEE Security & Privacy Magazine, May/June, pp. 32-44.

Provos, N. (2001). Defending Against Statistical Steganalysis. 10th USENIX Security
Symposium, Volume 10, pp. 323-336.

Provos, N. (2004) OutGuess. Retrieved July 26, 2006, http://www.outguess.org/.

Radcliff, D. (2002). Steganography: Hidden Data. Computerworld, Inc., June 10, 2002,
Retrieved March 6, 2008,
http://www.computerworld.com/securitytopics/security/story/0,10801,71726,00.html.

Rakotomamonjy, A. (2003). Variable Selection Using SVM based Criteria, The Journal
of Machine Learning Research, Volume 3, pp. 1357-1370.

Rao, K. P. and Yip, P. (1990). Discrete Cosine Transform Algorithms, Advantages,
Applications. San Diego, CA: Academic Press, Inc.

Rawlinson, G. (1889). The History of Herodotus, Volume I, New York, NY: D. Appleton
and Company.

Rawlinson, G. (1875). The History of Herodotus, Volume II, Albemarle Street, London:
John Murray.

Rawlinson, G. (1862). The History of Herodotus, Volume III, Albemarle Street, London:
John Murray.

Rawlinson, G. (1880). The History of Herodotus, Volume IV, Albemarle Street, London:
John Murray.

Rencher, A. C. (2002). Methods of Multivariate Analysis Second Edition. New York, NY:
John Wiley & Sons, Inc.

Rice, J. A. (1995). Mathematical Statistics and Data Analysis Second Edition. Belmont,
CA: Wadsworth Publishing Company.

 168

Rifkin, R. and Klautau, A. (2004). In Defense of One-Vs.-All Classification. The Journal
of Machine Learning Research, Volume 5, pp. 101-141.

Rodriguez, B. M. and Peterson, G. L. (2007). Steganography Detection Using Multi
Class Classification. In Craiger, P., and Shenoi, S. (Eds.), Advances in Digital
Forensics III, (pp. 193-204). Boston, MA: Springer Science+Business Media.

Rodriguez, B. M. and Peterson, G. L. (2008a). Classifier Dependent Feature
Preprocessing Methods, Mobile Multimedia/Image Processing, Security, and
Applications 2008, Agaian, S. S. and Jassim, S. A. (Eds.), Proceedings of the SPIE,
Volume 6982, pp. 69820S 1-12.

Rodriguez, B. M. and Peterson, G. L. (2008b). Multi-Class Classification Fusion using
Boosting for Identifying Steganography Methods. Multisensor, Multisource
Information Fusion: Architectures, Algorithms, and Applications 2008, Dasarathy, B.
V. (Ed.), Proceedings of the SPIE, Volume 6974, pp. 697407 1-10.

Rodriguez, B. M., Peterson, G. L. and Bauer, K. W. (2008a). Feature Ranking for SVM
and Kernel Fishers Discriminant Classifiers, In IEEE Transactions on Pattern
Analysis and Machine Intelligence, Submitted, June 2008.

Rodriguez, B. M., Peterson, G. L. and Bauer, K. W. (2008b). Fusion of Steganalysis
Systems using Bayesian Model Averaging. Manuscript Submitted for publication.

Ruck, D. W. (1990). Characterization of Multilayer Perceptrons and Their Application to
Multisensor Automatic Target Detection. University published dissertation,
AFIT/DS/ENG/90-2, Air Force Institute of Technology, Wright-Patterson AFB, OH.

Ruck, D. W., Rogers, S. K. and Kabrisky, M. (1990). Feature Selection Using a
Multilayer Perceptron. Journal of Neural Network Computing, Volume 2, Number 2,
pp 40-48.

Russell, S. and Norvig, P. (2003). Artificial Intelligence A Modern Approach Second
Edition, Upper Saddle River, NJ: Pearson Education, Inc.

Ruta, D. and Gabrys, B. (2000). An Overview of Classifier Fusion Methods, Computing
and Information Systems, Volume 7, pp. 1-10.

Ruta, D. and Gabrys, B. (2001). Application of the Evolutionary Algorithms for
Classifier Selection in Multiple Classifier Systems with Majority Voting. Lecture
Notes in Computer Science, Volume 2096, pp 399-408.

 169

Ruta, D. and Gabrys, B. (2005).Classifier Selection for Majority Voting. Information
Fusion. Volume 6, Issue 1, pp. 63-81.

Sallee, P. (2003). Model-Based Steganography. Lecture Notes in Computer Science,
Volume 2939, pp. 154-167, Berlin Heidelberg: Springer-Verlag.

Sallee, P. (2006) Model-Based Steganography. Retrieved July 20,
2006 http://redwood.ucdavis.edu/phil.

Sallee, P. (2008a) Matlab JPEG Toolbox. Retrieved June 15, 2008
http://www.philsallee.com/jpegtbx/index.html.

Sallee, P. (2008b) Model-Based Steganography Version 1.2. Retrieved June 15, 2008
http://www.philsallee.com/mbsteg/index.html.

Sanguinetti, G., Laidler, J., Lawrence, N. D., (2005). Automatic Determination of the
Number of Clusters Using Spectral Algorithms. Machine Learning for Signal
Processing, 2005 IEEE Workshop on, pp.55-60.

Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K.-R., Rätsch, G. and Smola,
A. (1999). Input Space vs. Feature Space in Kernel-Based Methods. IEEE
Transactions on Neural Networks, Volume 10, Number 5, pp. 1000–1017.

Scholkopf, B.; Smola, A. J. (2002). Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond. Cambridge, MA: MIT Press.

Scholkopf, B., Smola, A. and Muller, K.R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, Volume 10, pp. 1299–1319.

Schwenker, F. (2000). Hierarchical Support Vector Machines for Multi-Class Pattern
Recognition. Proceedings, Fourth International Conference on Knowledge-Based
Intelligent Engineering Systems and Allied Technologies, Volume 2, pp. 561-565.

Shi, Y.Q., Xuan, G., Zou, D., Gao, J., Yang, C., Zhang, Z., Chai, P., Chen, W. and Chen,
C. (2005). Image steganalysis based on moments of characteristic functions using
wavelet decomposition, prediction-error image, and neural network. IEEE
International Conference on Multimedia and Expo, pp. 1-4.

Shipp, C. A. and Kuncheva, L. I. (2002). Relationships between combination methods
and measures of diversity in combining classifiers, Information Fusion, Volume
3, Number 2, June 2002 , pp. 135-148.

http://redwood.ucdavis.edu/phil�
http://sml.nicta.com.au/~smola/�
http://www.ingentaconnect.com/content/els/15662535;jsessionid=dfgjicg0o735a.alexandra�

 170

Silman, J. (2001). Steganography and Steganalysis; An Overview. SANS Institute,
Retrieved June 3, 2008,
www.sans.org/reading_room/whitepapers/stenganography/553.php.

Simmons, G.J. (1984). The Prisoners’ Problem and the Subliminal Channel. Proceedings
of CRYPTO’83 Advances in Cryptology, pp. 51-67.

Simoncelli, E. P. and Adelson, E. H. (1990). Subband Transforms. Subband Image
Coding, Woods, J. (Ed.), Norwell, MA: Kluwer Academic Press.

Specht, D. F. (1998). Probabilistic Neural Networks for Classification, Mapping , or
Associative Memory. IEEE International Conference on Neural Networks, pp. 525-
532.

Specht, D. F. (1990). Probabilistic Neural Networks. In Neural Networks, Volume 3, pp.
109-118.

Steganos, (2008). Steganos Privacy Suite 2008, http://www.steganos.com/us/.

Stone, M. (1974). Cross-validatory Choice and Assessment of Statistical Predictions.
Journal of the Royal Statistical Society, Series B (Methodological), Volume 36,
Number 2, pp. 111-147.

Tax, D.M.J. Duin, R.P.W. (2002). Using two-class classifiers for multiclass
classification. Proceedings 16th International Conference on Pattern Recognition,
Volume 2, pp. 124 – 127.

Theodoridis, S. and Koutroumbas, K. (2006). Pattern Recognition Third Edition. San
Diego, CA: Academic Press.

Tomasi, C. (2006). Estimating Gaussian Mixture Densities with EM – A Tutorial. Duke
University Course Notes, Retrieved Sept 15, 2006
http://www.cs.duke.edu/courses/spring04/cps196.1/handouts/EM/tomasiEM.pdf.

Trujillo-Ortiz, A., Hernandez-Walls, R., Castro-Perez, A. and Barba-Rojo, K. (2008).
MOUTLIER1: Detection of Outlier in Multivariate Samples Test. A MATLAB file,
Retrieved March 15, 2008
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12252.

Upham, D (1993) JPEG - JSteg. Retrieved July 20, 2005
ftp://ftp.funet.fi/pub/crypt/steganography/.

 171

van der Heijden, F., Duin, R.P.W., de Ridder, D. And Tax, D.M.J. (2004). Classification,
Parameter Estimation and State Estimation An Engineering Approach using Matlab.
England: John Wiley & Sons, Inc.

Vanderbei, R.J. and Shanno, D.F. (1999). An Interior Point Algorithm for Nonconvex
Nonlinear Programming, Proceedings of the journal of Computational Optimization
and Applications, Volume 13, pp. 231-252.

Vapnik, V., (1998). Statistical Learning Theory. New York, NY: John Wiley & Sons,
Inc.

Wackerly, D. D., Mendenhall, W. and Scheaffer, R. L. (1996). Mathematical Statistics
with Applications. Belmont, CA: Wadsworth Publishing Company.

Wand, M. and Jones, M. (1995). Kernel Smoothing. London: Chapman & Hall.

Wang, Y. and Moulin, P. (2007). Optimized Feature Extraction for Learning-Based
Image Steganalysis. IEEE Transactions on Information Forensics and Security,
Volume 2, Number 1, pp. 31-45.

Wang, Y-C. and Casasent, D. (2005). New Hierarchical SVM Classifier for Multi-class
Target Recognition. Intelligent Robots and Computer Vision XXIII: Algorithms,
Techniques, and Active Vision, Casasent, D. P., Hall, E. L. and Juha, R. (Eds.),
Proceedings of the SPIE, Volume 6006, pp. 359-370.

Westfeld, A. (2001). F5–A Steganographic Algorithm High Capacity Despite Better
Steganalysis. Lecture Notes in Computer Science, Volume 2137, pp. 289-302, Berlin
Heidelberg: Springer-Verlag.

Westfeld, A. (2003). Steganography Software F5. Retrieved July 26,
2006 http://wwwrn.inf.tu-dresden.de/~westfeld/f5.html.

Westfeld, A. and Pfitzmann, A. (1999). Attacks on Steganographic Systems. Lecture
Notes in Computer Science, Volume 1768, pp. 61-76, London, UK: Springer-Verlag.

Weston, J., Elisseeff, A., BakIr, G. and Sinz, F. (2006). The Spider. Retrieved October
19, 2007, http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html.

Weston, J., Elisseeff, A., Scholkopf, B. and Tipping, M., (2003) Use of the Zero-Norm
with Linear Models and Kernel Methods, The Journal of Machine Learning
Research, Volume 3, pp. 1439-1461.

http://wwwrn.inf.tu-dresden.de/~westfeld/f5.html�

 172

Wilks, S. S. (1963). Multivariate Statistical Outliers. The Indian Journal of Statistics,
Volume 25, Issue A, pp. 407-426.

Woods, K., Kegelmeyer, W. P. and Bowyer, K. (1997). Combination of multiple
classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Volume 19 Number 4 pp. 405–410.

Xuan, G., Shi, Y. Q., Gao, J., Zou, D., Yang, C., Zhang, Z., Chai, P., Chen, C. and Chen,
W. (2005). Steganalysis Based on multiple features formed by statistical moments of
wavelet characteristic functions. Lecture Note in Computer Science, Barni, M.;
Herrera Joancomartí, J.; Katzenbeisser, S.; Pérez-González, F. (Eds.), Volume 3727,
pp. 262-277, Berlin Heidelberg: Springer-Verlag.

Yang, J., Yang, X. and Zhang, J. (2006). A Parallel Multi-Class Classification Support
Vector Machine Based on Sequential Minimal Optimization. Proceedings of the First
International Multi-Symposiums on Computer and Computational Sciences, Volume
1, pp. 443-446.

Yip, P. and Rao, K. (1987). On the shift properties of DCT’s and DST’s. IEEE
Transactions on Acoustics, Speech and Signal Processing Volume 35, Issue 3 pp.
404-406.

 173

Vita

Benjamin M. Rodriguez II received his Bachelor’s degree in Electrical Engineering from

the University of Texas at San Antonio in 2003. He also received a Master of Science

degree in Electrical Engineering from the University of Texas at San Antonio in August

2005. Upon completion of his Ph.D. degree in Electrical and Computer Engineering from

the Air Force Institute of Technology, Wright Patterson Air Force Base, Ohio in the Fall

of 2008 Mr. Rodriguez will start work in the Washington D.C. area.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

11 September 2008
2. REPORT TYPE

Ph. D. Dissertation

3. DATES COVERED (From – To)
September 2005 – September 2008

4. TITLE AND SUBTITLE

 MULTI-CLASS CLASSIFICATION FOR IDENTIFYING JPEG
 STEGANOGRAPHY EMBEDDING METHODS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

 Rodriguez II, Benjamin, M., Civ.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/DEE/ENG/08-20

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Steganographic Intelligence Technologies Program Manager Air Force Research
 Laboratory Information Directorate Multi-Sensor Exploitation Branch (AFRL/RIEC)
 Attn: Chad D. Heitzenrater, CSDP
 525 Brooks Road, Rome NY 13441
 COM: 315-330-2575 (DSN: 587-2575) Email: chad.heitzenrater@rl.af.mil

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Over 725 steganography tools are available over the Internet, each providing a method for covert transmission of secret
messages. This research presents four steganalysis advancements that result in an algorithm that identifies the steganalysis tool used
to embed a secret message in a JPEG image file. The algorithm includes feature generation, feature preprocessing, multi-class
classification and classifier fusion. The first contribution is a new feature generation method which is based on the decomposition of
discrete cosine transform (DCT) coefficients used in the JPEG image encoder. The generated features are better suited to identifying
discrepancies in each area of the decomposed DCT coefficients. Second, the classification accuracy is further improved with the
development of a feature ranking technique in the preprocessing stage for the kernel Fisher’s discriminant (KFD) and support vector
machines (SVM) classifiers in the kernel space during the training process. Third, for the KFD and SVM two-class classifiers a
classification tree is designed from the kernel space to provide a multi-class classification solution for both methods. Fourth, by
analyzing a set of classifiers, signature detectors, and multi-class classification methods a classifier fusion system is developed to
increase the detection accuracy of identifying the embedding method used in generating the steganography images. Based on
classifying stego images created from research and commercial JPEG steganography techniques, F5, JP Hide, JSteg, Model-based,
Model-based Version 1.2, OutGuess, Steganos, StegHide and UTSA embedding methods the performance of the system shows a
statistically significant increase in classification accuracy of 10%. In addition, this system provides a solution for identifying
steganographic fingerprints as well as the ability to include future multi-class classification tools.
15. SUBJECT TERMS
Steganography; Steganalysis; Multi-Class Classification; Classifier Fusion

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

191

19a. NAME OF RESPONSIBLE PERSON
Dr. Gilbert L. Peterson (ENG) gilbert.peterson@afit.edu

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4281

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Dissertation Rodriguez 10 August 2008
	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	I. Introduction
	1.1 Background
	1.1.1 Introduction to Steganography
	1.1.2 Difference between Steganography and Cryptography
	1.1.3 Differences between Steganography and Watermarking
	1.1.4 Steganalysis

	1.2 Problem Statement
	1.2.1 Feature Generation
	1.2.2 Feature Improvement
	1.2.3 Classification
	1.2.4 Classifier Fusion

	1.3 Methodology
	1.3.1 DCT Feature Generation
	1.3.2 Feature Improvement
	1.3.3 Classification
	1.3.4 Classifier Fusion
	1.3.5 Results

	1.4 Summary

	II. Literature Review
	2.1 JPEG Image Representation Background
	2.2 Feature Generation for JPEG Images
	2.2.1 Wavelet Statistical Model
	2.2.2 DCT Features

	2.3 Feature Preprocessing
	2.3.1 Data Preparation
	2.3.2 Outlier Removal

	2.4 Feature Extraction
	2.4.1 Principal Component Analysis (PCA)
	2.4.2 Kernel PCA

	2.5 Feature Ranking/Selection
	2.5.1 Bhattacharyya Distance
	2.5.2 Fisher’s Linear Discriminant Ratio (FDR/F-Score)
	2.5.3 Signal-to-Noise Feature Selection
	2.5.4 Kernel Fisher’s Recursive Feature Elimination
	2.5.5 Zero-Norm Feature Ranking

	2.6 Classification
	2.6.1 Expectation Maximization (EM)
	2.6.1.1 Mixture Models
	2.6.1.2 Bayes Classifier

	2.6.2 k-Nearest Neighbors
	2.6.3 Kernel Fisher’s Discriminant (KFD)
	2.6.4 Parzen Window
	2.6.5 Probabilistic Neural Networks (PNN)
	2.6.6 Support Vector Machine (SVM)

	2.7 Multi-Class Classification
	2.7.1 One-Against-One
	2.7.2 One-Against-All

	2.8 Classifier Fusion
	2.8.1 Boosting
	2.8.2 Bayes Network for Model Averaging
	2.8.3 Probabilistic Neural Network (PNN) Fusion

	2.9 Summary

	III. Methodology
	3.1 Feature Generation
	3.1.1 DCT Representation
	3.1.2 Arrangement of Decomposed DCT Coefficients
	3.1.2.1 Frequency and Directional Coefficient Vectors
	3.1.2.2 Block Shifted Coefficient Vectors
	3.1.2.3 Neighboring Coefficient Matrices

	3.1.3 Metrics Calculation
	3.1.3.1 Mean Difference between DCT Coefficients and Neighboring Coefficients
	3.1.3.2 Least Squares Linear Regression

	3.1.4 Statistics Calculation
	3.1.5 Features

	3.2 Feature Ranking/Selection
	3.2.1 SVM-Kernel Feature Ranking (KFR)
	3.2.2 Kernel Fisher’s Discriminant Classifier Kernel Feature Ranking (KF-KFR)

	3.3 Learning Decision Trees using Kernel mapping for creating Multi-class Classification from two-class KFD and SVM Classifiers
	3.4 Fusion of Multi-Class Classification Systems
	3.4.1 AdaBoost Boosting
	3.4.2 Bayes Network for Model Averaging
	3.4.3 Probabilistic Neural Network (PNN) Fusion

	3.5 Summary

	IV. Analysis and Results
	4.1 Confirming and Validating the Analysis
	4.2 Feature Generation Method Comparison
	4.2.1 Wavelet Feature Generation (Lyu and Farid, 2004)
	4.2.2 DCT Feature Generation (Pevny and Fridrich, 2006)
	4.2.3 DCT Directional and Frequency Decomposition
	4.2.4 Combined Features
	4.2.5 Summary of Feature Generation Methods

	4.3 Results for Individual Multi-class Detection Systems
	4.3.1 Expectation Maximization
	4.3.2 k–Nearest Neighbors (k-NN)
	4.3.3 Probabilistic Neural Networks (PNN)
	4.3.4 Parzen window
	4.3.5 Kernel Fisher’s Discriminant (KFD) with Multi-class Tree
	4.3.6 Support Vector Machines (SVM) with Multi-class Tree
	4.3.7 StegoWatch
	4.3.8 Summary of Steganalysis Multi-Class results

	4.4 Fusion
	4.4.1 AdaBoost
	4.4.2 Bayes Fusion
	4.4.3 PNN Fusion
	4.4.4 Summary of Multi-class Steganalysis Fusion Techniques

	4.5 Summary

	V. Conclusion and Recommendations
	5.1 Application of Results
	5.2 Recommendations for Future Work
	5.3 Conclusion

	Appendix A
	Bibliography
	Vita

	SF 298 Rpt BRodriguez

